Skip to main content
Log in

Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Progress in our understanding of the solar corona requires that the results of advanced magnetohydrodynamic models driven by measured magnetic fields, and particularly the underlying heating models, be thoroughly compared with coronal observations. The comparison has so far mainly concerned the global morphology of the corona, synthetic images calculated from the models being compared with observed images. We go one step further by performing detailed quantitative comparisons between the calculated polarized radiance \(pB\) using the three-dimensional electron density produced by MHD models and well calibrated polarized images obtained by the Large Angle Spectrometric Coronagraph LASCO-C2 coronagraph complemented by ground-based images when available from the Mauna Loa Solar Observatory Mark IV and K-Cor instruments to extend the comparison to the inner coronal region 1.0 – 2.5 \(\mbox{R}_{\odot }\), which is inaccessible to C2. We take advantage of the high-resolution and high-quality MHD predictions performed for several solar eclipses (1 August 2008, 11 July 2010, 13 November 2012, and 21 August 2017) and for the first perihelion passage of the Parker Solar Probe (5 November 2018) using two different three-dimensional MHD models relying on either a thermodynamic or a wave-turbulence-driven methodologies to heat the corona. Both models are generally able to match the observed structure and photometry of the corona albeit with various degrees of fidelity for which there is no obvious explanation. However, two limitations emerge, the complexity of coronae of the maximum type and the time lapse between the completion of the magnetograph measurements and the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Similar content being viewed by others

Notes

  1. See http://www.predsci.com/corona.

  2. See http://www.predsci.com/mhdweb/home.php.

  3. See http://www.predsci.com/mhdweb/home.php.

  4. See http://www.predsci.com/corona/jul10eclipse/jul10eclipse.html.

  5. See http://www.predsci.com/corona/nov2012eclipse/nov2012eclipse.html.

  6. See http://www.predsci.com/corona/aug2017eclipse/home.php.

  7. See http://www.predsci.com/mhdweb/home.php.

References

  • Barlyaeva, T., Lamy, P., Llebaria, A.: 2015, Mid-term quasi-periodicities and solar cycle variation of the white-light corona from 18.5 years (1996.0–2014.5) of LASCO observations. Solar Phys.290(7), 2117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys.162(1–2), 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Downs, C., Lionello, R., Mikić, Z., Linker, J.A., Velli, M.: 2016, Closed-field coronal heating driven by wave turbulence. Astrophys. J.832, 180. DOI . ADS .

    Article  ADS  Google Scholar 

  • Frazin, R.A.: 2000, Tomography of the solar corona. I. A robust, regularized, positive estimation method. Astrophys. J.530, 1026. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996–2009). Solar Phys.283, 667. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D.J., Guhathakurta, M., Holzer, T., St. Cyr, O.C.: 2003, Three-dimensional coronal density structure: 1. Model. J. Geophys. Res.108(A12), 1444. DOI . ADS .

    Article  Google Scholar 

  • Gombosi, T.I., van der Holst, B., Manchester, W.B., Sokolov, I.V.: 2018, Extended MHD modeling of the steady solar corona and the solar wind. Living Rev. Solar Phys.15, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jin, M., Manchester, W.B., van der Holst, B., Gruesbeck, J.R., Frazin, R.A., Landi, E., Vasquez, A.M., Lamy, P.L., Llebaria, A., Fedorov, A., Toth, G., Gombosi, T.I.: 2012, A global two-temperature corona and inner heliosphere model: A comprehensive validation study. Astrophys. J.745, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: The view from LASCO white-light coronal images. J. Geophys. Res.119(1), 47. DOI . ADS .

    Article  Google Scholar 

  • Lamy, P., Boclet, B., Wojak, J., Vibert, D.: 2017, Anomalous surge of the white-light corona at the onset of the declining phase of Solar Cycle 24. Solar Phys.292, 60. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275(1–2), 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liewer, P.C., Hall, J.R., De Jong, M., Socker, D.G., Howard, R.A., Crane, P.C., Reiser, P., Rich, N., Vourlidas, A.: 2001, Determination of three-dimensional structure of coronal streamers and relationship to the solar magnetic field. J. Geophys. Res.106(A8), 15903. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during whole sun month. J. Geophys. Res.104, 9809. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikić, Z., Henney, C.J., Arge, C.N., Kim, T., Pogorelov, N.: 2016, An empirically driven time-dependent model of the solar wind. J. Phys. Conf. Ser.719(1), 012012. DOI . ADS .

    Article  Google Scholar 

  • Linker, J.A., Caplan, R.M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C.J., Arge, C.N., Liu, Y., Derosa, M.L., Yeates, A., Owens, M.J.: 2017, The open flux problem. Astrophys. J.848, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2001, Including the transition region in models of the large-scale solar corona. Astrophys. J.546, 542. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the sun during the first whole sun month: Magnetohydrodynamic simulations. Astrophys. J.690, 902. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z.: 2014a, Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration. Astrophys. J.796, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014b, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J.784, 120. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Solar Phys.279, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Llebaria, A., Lamy, P.: 2008, In-orbit calibration of the polarization flat fields of the SOHO-LASCO coronagraphs. In: Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter, Proc. SPIE7010, 70101I. DOI . ADS .

    Chapter  Google Scholar 

  • Llebaria, A., Thernisien, A.: 2001, Highly accurate photometric equalization of long sequences of coronal images. In: Starck, J.-L., Murtagh, F.D. (eds.) Astronomical Data Analysis, Proc. SPIE4477, 265. DOI . ADS .

    Chapter  Google Scholar 

  • Llebaria, A., Lamy, P., Danjard, J.-F.: 2006, Photometric calibration of the LASCO-C2 coronagraph for solar system objects. Icarus182, 281. DOI . ADS .

    Article  ADS  Google Scholar 

  • Llebaria, A., Lamy, P.L., Bout, M.V.: 2004, Lessons learned from the SOHO/LASCO-C2 calibration. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE5171, 26. DOI . ADS .

    Chapter  Google Scholar 

  • Mackay, D.H., Yeates, A.R., Bocquet, F.-X.: 2016, Impact of an L5 magnetograph on nonpotential solar global magnetic field modeling. Astrophys. J.825(2), 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacNeice, P., Jian, L.K., Antiochos, S.K., Arge, C.N., Bussy-Virat, C.D., DeRosa, M.L., Jackson, B.V., Linker, J.A., Mikic, Z., Owens, M.J.: 2018, Assessing the quality of models of the ambient solar wind. Space Weather16(11), 1644. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas6, 2217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mikić, Z., Linker, J.A., Lionello, R., Riley, P., Titov, V.: 2007, Predicting the structure of the solar corona for the total solar eclipse of March 29, 2006. In: Demircan, O., Selam, S.O., Albayrak, B. (eds.) Solar and Stellar Physics Through Eclipses, Astronomical Society of the Pacific Conference Series370, 299. ADS .

    Google Scholar 

  • Mikic, Z., Downs, C., Linker, J.A., Caplan, R.M., Lionello, R., Torok, T., Titov, V., Riley, P., Mackay, D., Upton, L.: 2017, Prediction of the solar corona for the 2017 August 21 total solar eclipse. In: AAS/Solar Physics Division Abstracts #48, AAS/Solar Physics Division Meeting48, 208.01. ADS .

    Google Scholar 

  • Mikić, Z., Downs, C., Linker, J.A., Caplan, R.M., Mackay, D.H., Upton, L.A., Riley, P., Lionello, R., Török, T., Titov, V.S., Wijaya, J., Druckmüller, M., Pasachoff, J.M., Carlos, W.: 2018, Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron.2, 913. DOI . ADS .

    Article  ADS  Google Scholar 

  • Morgan, H., Habbal, S.R.: 2007, An empirical 3D model of the large-scale coronal structure based on the distribution of \(\mbox{H}{{\upalpha}}\) filaments on the solar disk. Astron. Astrophys.464(1), 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pagot, E., Lamy, P., Llebaria, A., Boclet, B.: 2014, Automated processing of LASCO coronal images: Spurious point-source-filtering and missing-blocks correction. Solar Phys.289, 1433. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Bertello, L., Pevtsov, A.A.: 2016, Modeling the global coronal field with simulated synoptic magnetograms from L1 and L5. In: AGU Fall Meeting Abstracts. SH11C. ADS .

    Google Scholar 

  • Pevtsov, A.A., Bertello, L., MacNeice, P., Petrie, G.: 2016, What if we had a magnetograph at Lagrangian L5? Space Weather14(11), 1026. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res.106, 15889. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Downs, C., Linker, J.A., Mikic, Z., Lionello, R., Caplan, R.M.: 2019, Predicting the structure of the solar corona and inner heliosphere during parker solar probe’s first perihelion pass. Astrophys. J. Lett.874, L15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rušin, V., Druckmüller, M., Aniol, P., Minarovjech, M., Saniga, M., Mikić, Z., Linker, J.A., Lionello, R., Riley, P., Titov, V.S.: 2010, Comparing eclipse observations of the 2008 August 1 solar corona with an MHD model prediction. Astron. Astrophys.513, A45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saez, F., Zhukov, A.N., Lamy, P., Llebaria, A.: 2005, On the 3-dimensional structure of the streamer belt of the solar corona. Astron. Astrophys.442(1), 351. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saez, F., Llebaria, A., Lamy, P., Vibert, D.: 2007, Three-dimensional reconstruction of the streamer belt and other large-scale structures of the solar corona. I. Method. Astron. Astrophys.473(1), 265. DOI . ADS .

    Article  ADS  Google Scholar 

  • van der Holst, B., Manchester, W.B. IV, Klein, K.G., Kasper, J.C.: 2019, Predictions for the first parker solar probe encounter. Astrophys. J.872(2), L18. DOI .

    Article  ADS  Google Scholar 

  • Vibert, D., Peillon, C., Lamy, P., Frazin, R.A., Wojak, J.: 2016, Time-dependent tomographic reconstruction of the solar corona. Astron. Comput.17, 144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, T., Reginald, N.L., Davila, J.M., St. Cyr, O.C., Thompson, W.T.: 2017, Variation in coronal activity from Solar Cycle 24 minimum to maximum using three-dimensional reconstructions of the coronal electron density from STEREO/COR1. Solar Phys.292, 97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R., Andrews, M.D.: 2002, Polarity reversal of the solar magnetic field during Cycle 23. J. Geophys. Res.107(A12), 1465. DOI . ADS .

    Article  Google Scholar 

  • Wang, Y.-M., Sheeley, J.N.R., Howard, R.A., Kraemer, J.R., Rich, N.B., Andrews, M.D., Brueckner, G.E., Dere, K.P., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Paswaters, S.E., Socker, D.G., Wang, D., Lamy, P.L., Llebaria, A., Vibert, D., Schwenn, R., Simnett, G.M.: 1997, Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys. J.485(2), 875. DOI . ADS .

    Article  ADS  Google Scholar 

  • Weinzierl, M., Mackay, D.H., Yeates, A.R., Pevtsov, A.A.: 2016, The possible impact of L5 magnetograms on non-potential solar coronal magnetic field simulations. Astrophys. J.828(2), 102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yang, L.P., Feng, X.S., Xiang, C.Q., Liu, Y., Zhao, X., Wu, S.T.: 2012, Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data. J. Geophys. Res.117, A08110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A., Constable, J.A.: 2010, A nonpotential model for the Sun’s open magnetic flux. J. Geophys. Res.115(A9), A09112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Amari, T., Contopoulos, I., Feng, X., Mackay, D.H., Mikić, Z., Wiegelmann, T., Hutton, J., Lowder, C.A., Morgan, H., Petrie, G., Rachmeler, L.A., Upton, L.A., Canou, A., Chopin, P., Downs, C., Druckmüller, M., Linker, J.A., Seaton, D.B., Török, T.: 2018, Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci. Rev.214, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhukov, A.N., Saez, F., Lamy, P., Llebaria, A., Stenborg, G.: 2008, The origin of polar streamers in the solar corona. Astrophys. J.680(2), 1532. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PR and ZM would like to acknowledge support from NASA (NNX15AB65G, 80NSSC18K0099, 80NSSC18K0100, 80NSSC18K0101, NNX17AB78G), NOAA (NA18NWS4680081), and AFOSR (FA9550-15-C-0001). Computational resources were provided by NSF’s XSEDE and NASA’s NAS. The LASCO-C2 project at the Laboratoire Atmosphères, Milieux et Observations Spatiales is funded by the Centre National d’Etudes Spatiales (CNES). LASCO was built by a consortium of the Naval Research Laboratory, USA, the Laboratoire d’Astrophysique de Marseille (formerly Laboratoire d’Astronomie Spatiale), France, the Max-Planck-Institut für Sonnensystemforschung (formerly Max Planck Institute für Aeronomie), Germany, and the School of Physics and Astronomy, University of Birmingham, UK. SOHO is a project of international cooperation between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lamy.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, P., Floyd, O., Mikić, Z. et al. Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images. Sol Phys 294, 162 (2019). https://doi.org/10.1007/s11207-019-1549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1549-9

Keywords

Navigation