Skip to main content
Log in

Intermittencies and Local Heating in Magnetic Cloud Boundary Layers

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We perform a statistical study on the intermittency and the associated local heating in the front boundary layers (BLs) of 74 magnetic clouds (MCs). The intermittent structures are identified by the partial variance of increments (PVI) method. The probability distribution function of PVI-values reveals that the BLs are more intermittent than adjacent sheath regions, and they contain a greater concentration of strong intermittencies. These strong intermittencies are accompanied by local enhancement of the proton temperature, while the enhancement is not prominent at weaker intermittencies inside the BLs. Since the strong intermittencies are associated with magnetic reconnection (MR) processes according to previous studies, these results indicate that MR processes may account for the local heating in the MCBLs to a large extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Berdichevsky, D.B.: 2013, On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion. Solar Phys.284(1), 245. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E67(3), 036405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1968, Micro-scale structures in the interplanetary medium. Solar Phys.4, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York. ISBN 0-19-508472-1. ADS .

    Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chian, A.C.-L., Muñoz, P.R.: 2011, Detection of current sheets and magnetic reconnections at the turbulent leading edge of an interplanetary coronal mass ejection. Astrophys. J. Lett.733(2), L34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys.455(1), 349. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Osherovich, V.A.: 1992, A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds. In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven Cospar, Pergamon, Amsterdam, 611. DOI . ADS .

    Chapter  Google Scholar 

  • Farrugia, C.J., Vasquez, B., Richardson, I.G., Torbert, R.B., Burlaga, L.F., Biernat, H.K., Mühlbachler, S., Ogilvie, K.W., Lepping, R.P., Scudder, J.D., Berdichevsky, D.E., Semenov, V.S., Kubyshkin, I.V., Phan, T.-D., Lin, R.P.: 2001, A reconnection layer associated with a magnetic cloud. Adv. Space Res.28(5), 759. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: 2005, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res.110(A1), A01107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Greco, A., Chuychai, P., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2008, Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett.35, L19111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., Servidio, S., Chuychai, P., Dmitruk, P.: 2009a, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett.691(2), L111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2009b, Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? Phys. Rev. E80, 046401. DOI . ADS .

    Article  ADS  Google Scholar 

  • Greco, A., Matthaeus, W.H., Perri, S., Osman, K.T., Servidio, S., Wan, M., Dmitruk, P.: 2018, Partial variance of increments method in solar wind observations and plasma simulations. Space Sci. Rev.214, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, P.D.: 1970, Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci.18, 1611. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys.14(1), 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kolmogorov, A.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301. ADS .

    ADS  MathSciNet  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., McClernan, K.: 2003, Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res.108(A7), 1279. DOI . ADS .

    Article  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev.71, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys.24(1), 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 2007 – 2009 solar minimum: frequency of occurrence and some unusual properties. Solar Phys.274, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 – 2012: model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys.290, 2265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2018, Wind magnetic clouds for the period 2013 – 2015: model fitting, types, associated shock waves, and comparisons to other periods. Solar Phys.293, 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Rème, H., Bosqued, J.M., Coutelier, J., Cotin, F., D’Uston, C., Wenzel, K.-P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: 1995, A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci. Rev.71, 125. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res.92, 11189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.Y.: 1994, Non-Gaussian probability distributions of solar wind fluctuations. Ann. Geophys.12, 1127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, J.E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Nonlinear evolution of magnetic flux ropes 1. Low-beta limit. J. Geophys. Res.98(A8), 13225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1995, Nonlinear evolution of magnetic flux ropes. 2. Finite beta plasma. J. Geophys. Res.100(A7), 12307. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Fainberg, J., Stone, R.G., Fitzenreiter, R., Viñas, A.F.: 1998, Measurements of polytropic index in the January 10 – 11, 1997 magnetic cloud observed by WIND. Geophys. Res. Lett.25(15), 3003. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osman, K.T., Matthaeus, W.H., Greco, A., Servidio, S.: 2011, Evidence for inhomogeneous heating in the solar wind. Astrophys. J.727, L11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osman, K.T., Matthaeus, W.H., Hnat, B., Chapman, S.C.: 2012b, Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett.108, 261103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osman, K.T., Matthaeus, W.H., Wan, M., Rappazzo, A.F.: 2012a, Intermittency and local heating in the solar wind. Phys. Rev. Lett.108, 261102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osman, K.T., Matthaeus, W.H., Gosling, J.T., Greco, A., Servidio, S., Hnat, B., Chapman, S.C., Phan, T.D.: 2014, Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett.112, 215002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petschek, H.E.: 1964, Magnetic field annihilation. NASASP-50, 425. ADS .

    ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res.117, A09101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Farrugia, C.J., Démoulin, P., Dasso, S., Owens, M.J., Sauvaud, J.-A., Rouillard, A.P., Lynnyk, A., Foullon, C., Savani, N.P., Luhmann, J.G., Galvin, A.B.: 2015, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.120, 43. DOI . ADS .

    Article  Google Scholar 

  • Servidio, S., Greco, A., Matthaeus, W.H., Osman, K.T., Dmitruk, P.: 2011, Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res.116, A09102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shimazu, H., Vandas, M.: 2002, A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planets Space54, 783. ADS .

    Article  ADS  Google Scholar 

  • Tessein, J.A., Matthaeus, W.H., Wan, M., Osman, K.T., Ruffolo, D., Giacalone, J.: 2013, Association of suprathermal particles with coherent structures and shocks. Astrophys. J.776, L8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tessein, J.A., Ruffolo, D., Matthaeus, W.H., Wan, M., Giacalone, J., Neugebauer, M.: 2015, Effect of coherent structures on energetic particle intensity in the solar wind at 1 AU. Astrophys. J.812, 68. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tessein, J.A., Ruffolo, D., Matthaeus, W.H., Wan, M.: 2016, Local modulation and trapping of energetic particles by coherent magnetic structures. Geophys. Res. Lett.43, 3620. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Smith, E.J.: 1979, Interplanetary discontinuities: temporal variations and the radial gradient from 1 to 8.5 AU. J. Geophys. Res.84, 2773. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979). J. Geophys. Res.93, 8519. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Dasgupta, B., Galvan, C., Neugebauer, M., Lakhina, G.S., Arballo, J.K., Winterhalter, D., Goldstein, B.E., Buti, B.: 2002a, Phase-steepened Alfvén waves, proton perpendicular energization and the creation of magnetic holes and magnetic decreases: the ponderomotive force. Geophys. Res. Lett.29(24), 2233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Galvan, C., Arballo, J.K., Winterhalter, D., Sakurai, R., Smith, E.J., Buti, B., Lakhina, G.S., Balogh, A.: 2002b, Relationship between discontinuities, magnetic holes, magnetic decreases, and nonlinear Alfvén waves: Ulysses observations over the solar poles. Geophys. Res. Lett.29, 1528. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Guarnieri, F.L., Echer, E., Lakhina, G.S., Verkhoglyadova, O.P.: 2009, Magnetic decrease formation from \(<1\) AU to-5 AU: corotating interaction region reverse shocks. J. Geophys. Res.114(A8), A08105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Turner, J.M., Burlaga, L.F., Ness, N.F., Lemaire, J.F.: 1977, Magnetic holes in the solar wind. J. Geophys. Res.82(13), 1921. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vasquez, B.J., Abramenko, V.I., Haggerty, D.K., Smith, C.W.: 2007, Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvénic turbulence. J. Geophys. Res.112, A11102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wan, M., Matthaeus, W.H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B., Chapman, S.C.: 2012, Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett.109, 195001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wan, M., Matthaeus, W.H., Roytershteyn, V., Karimabadi, H., Parashar, T., Wu, P., Shay, M.: 2015, Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys. Rev. Lett.114, 175002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Wei, F.S., Feng, X.S., Zhang, S.H., Zuo, P.B., Sun, T.R.: 2010, Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer. Phys. Rev. Lett.105, 195007. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Wei, F.S., Feng, X.S., Zuo, P.B., Guo, J.P., Xu, X.J., Li, Z.: 2012, Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts. Astrophys. J.749, 82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Wei, F.S., Feng, X.S., Xu, X.J., Zhang, J., Sun, T.R., Zuo, P.B.: 2015, Energy dissipation processes in solar wind turbulence. Astrophys. J. Suppl. S.221, 34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wei, F.: 2005, WIND observations of plasma waves inside the magnetic cloud boundary layers. Chin. Sci. Bull.50(18), 2051. DOI . ADS .

    Article  Google Scholar 

  • Wei, F., Liu, R., Fan, Q., Feng, X.: 2003a, Identification of the magnetic cloud boundary layers. J. Geophys. Res.108(A6), 1263. DOI . ADS .

    Article  Google Scholar 

  • Wei, F., Liu, R., Feng, X., Zhong, D., Yang, F.: 2003b, Magnetic structures inside boundary layers of magnetic clouds. Geophys. Res. Lett.30, 2283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wei, F., Feng, X., Yang, F., Zhong, D.: 2006, A new non-pressure-balanced structure in interplanetary space: boundary layers of magnetic clouds. J. Geophys. Res.111, A03102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Winslow, R.M., Lugaz, N., Schwadron, N.A., Farrugia, C.J., Yu, W., Raines, J.M., Mays, M.L., Galvin, A.B., Zurbuchen, T.H.: 2016, Longitudinal conjunction between MESSENGER and STEREO a: development of ICME complexity through stream interactions. J. Geophys. Res.121(7), 6092. DOI . ADS .

    Article  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2002, Effects of magnetic clouds on the occurrence of geomagnetic storms: the first 4 years of wind. J. Geophys. Res.107, 1314. DOI . ADS .

    Article  Google Scholar 

  • Zhou, Z., Wei, F., Feng, X., Wang, Y., Zuo, P., Xu, X.: 2018, Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer. Astrophys. J.863, 84. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zuo, P.B., Wei, F.S., Feng, X.S.: 2006, Observations of an interplanetary slow shock associated with magnetic cloud boundary layer. Geophys. Res. Lett.33, L15107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zuo, P.B., Wei, F.S., Feng, X.S., Yang, F.: 2007, The relationship between the magnetic cloud boundary layer and the substorm expansion phase. Solar Phys.242, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zuo, P.B., Wei, F.S., Feng, X.S., Xu, X.J., Song, W.B.: 2010, Magnetic cloud boundary layer of 9 November 2004 and its associated space weather effects. J. Geophys. Res.115, A10102. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the Wind/MFI, SWE, and 3DP teams and CDAWeb for making available data used in this article. This article uses data from the Heliospheric Shock Database, generated and maintained at the University of Helsinki. This work is jointly supported by the National Natural Science Foundation of China (41731067,41531073), Shenzhen Technology Project JCYJ20170307150645407, Shenzhen Technology Project JCYJ20180306171748011, and the Specialized Research Fund for State Key Laboratories of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Zuo.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zuo, P., Feng, X. et al. Intermittencies and Local Heating in Magnetic Cloud Boundary Layers. Sol Phys 294, 149 (2019). https://doi.org/10.1007/s11207-019-1537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1537-0

Keywords

Navigation