Skip to main content
Log in

Development of a Fast CME and Properties of a Related Interplanetary Transient

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the development of a coronal mass ejection (CME) caused by a prominence eruption on 24 February 2011 and properties of a related interplanetary CME (ICME). The prominence destabilized, accelerated, and produced an M3.5 flare, a fast CME, and a shock wave. The eruption at the east limb was observed in quadrature by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and by the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite on board the Solar-Terrestrial Relations Observatory (STEREO). The ICME produced by the SOL2011-02-24 event was measured in situ on STEREO-B two days later. The diagnostics made from multi-wavelength SDO/AIA images reveals a pre-eruptive heating of the prominence to about 7 MK and its subsequent heating during the eruption by flare-accelerated particles to about 10 MK. The hot plasma was detected in the related ICME as an enhancement in the ionic charge state of Fe, whose evolution was reproduced in the modeling. The analysis of the solar source region allows for predicting the variations of magnetic components in the ICME, while the flux-rope rotation by about \(40^{\circ }\) was indicated by observations. The magnetic-cloud propagation appears to be ballistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  • Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., Luhmann, J.G.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev.136, 203. DOI . ADS .

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 2000, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett.529, L49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Anzer, U.: 1978, Can coronal loop transients be driven magnetically? Solar Phys.57, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Anzer, U., Heinzel, P.: 2005, On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J.622, 714. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arnaud, M., Raymond, J.: 1992, Iron ionization and recombination rates and ionization equilibrium. Astrophys. J.398, 394. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Gopalswamy, N.: 2019, Global energetics of solar flares. VII. Aerodynamic drag in coronal mass ejections. Astrophys. J.877, 149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Battaglia, M., Kontar, E.P.: 2012, RHESSI and SDO/AIA observations of the chromospheric and coronal plasma parameters during a solar flare. Astrophys. J.760, 142. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., et al.: 2008, S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev.136, 487. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett.26, 627. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys.221, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J.338, 453. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, J.: 1996, Theory of prominence eruption and propagation: Interplanetary consequences. J. Geophys. Res.101, 27499. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J.: 2017, Physics of erupting solar flux ropes: Coronal mass ejections (CMEs) – Recent advances in theory and observation. Phys. Plasmas24, 090501. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J., Krall, J.: 2003, Acceleration of coronal mass ejections. J. Geophys. Res.108, 1410. DOI . ADS .

    Article  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Abunin, A.A.: 2017, An early diagnostics of the geoeffectiveness of solar eruptions from photospheric magnetic flux observations: The transition from SOHO to SDO. Solar Phys.292, 62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – Sources of non-recurrent geomagnetic storms and Forbush decreases. Solar Phys.282, 175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P.: 2010, Interaction of ICMEs with the solar wind. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, American Institute of Physics Conference Series1216, 329. DOI . ADS .

    Chapter  Google Scholar 

  • Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J.718, 1388. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys.162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.: 2013, Electric current equilibrium in the corona. Solar Phys.283, 401. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys.203, 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2002, Motion of an eruptive prominence in the solar corona. Astron. Rep.46, 417. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B., Koutchmy, S.: 2008, Causal relationships between eruptive prominences and coronal mass ejections. Ann. Geophys.26, 3025. DOI . ADS .

    Article  ADS  Google Scholar 

  • Foullon, C., Owen, C.J., Dasso, S., Green, L.M., Dandouras, I., Elliott, H.A., Fazakerley, A.N., Bogdanova, Y.V., Crooker, N.U.: 2007, Multi-spacecraft study of the 21 January 2005 ICME. Evidence of current sheet substructure near the periphery of a strongly expanding, fast magnetic cloud. Solar Phys.244, 139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., et al.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev.136, 437. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Low, B.C.: 1998, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys. J.493, 460. DOI . ADS .

    Article  ADS  Google Scholar 

  • Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett.779, L29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys.292, 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Chertok, I.M., Slemzin, V.A., Kuzin, S.V., Ignat’ev, A.P., Pertsov, A.A., Zhitnik, I.A., Delaboudinière, J.-P., Auchère, F.: 2005, CORONAS-F/SPIRIT EUV observations of October–November 2003 solar eruptive events in combination with SOHO/EIT data. J. Geophys. Res.110, A09S07. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan58, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuz’menko, I.V., Uralov, A.M., Chertok, I.M., Kochanov, A.A.: 2013, Microwave negative bursts as indications of reconnection between eruptive filaments and a large-scale coronal magnetic environment. Publ. Astron. Soc. Japan65, S10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Filippov, B.P., Rudenko, G.V., Temmer, M.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Phys.289, 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys.290, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys.291, 1173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Antiochos, S.K.: 2011, Constraints on coronal mass ejection evolution from in situ observations of ionic charge states. Astrophys. J.730, 103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev.136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • James, A.W., Green, L.M., Palmerio, E., Valori, G., Reid, H.A.S., Baker, D., Brooks, D.H., van Driel-Gesztelyi, L., Kilpua, E.K.J.: 2017, On-disc observations of flux rope formation prior to its eruption. Solar Phys.292, 71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jian, L.K., MacNeice, P.J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I.V., Evans, R.M.: 2015, Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather13, 316. DOI .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev.136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., Kim, Y.H.: 2012, Initiation of coronal mass ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J.746, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: 2010, Physical conditions in a coronal mass ejection from Hinode, STEREO, and SOHO observations. Astrophys. J.711, 75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lee, J.-Y., Raymond, J.C., Ko, Y.-K., Kim, K.-S.: 2009, Three-dimensional structure and energy balance of a coronal mass ejection. Astrophys. J.692, 1271. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H.: 2004, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res.109, A01112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res.106, 29231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, C.-H., Gallagher, P.T., Raftery, C.L.: 2010, Investigating the driving mechanisms of coronal mass ejections. Astron. Astrophys.516, A44. DOI . ADS .

    Article  MATH  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys.210, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett.710, L82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1982, Self-similar magnetohydrodynamics. I – The gamma = 4/3 polytrope and the coronal transient. Astrophys. J.254, 796. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev.136, 117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1951, On the stability of magneto-hydrostatic fields. Phys. Rev.83, 307. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., Li, Y., Laming, J.M., MacNeice, P.J., Linker, J.A.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J.740, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manchester, W.B. IV, Vourlidas, A., Tóth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys. J.684, 1448. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manchester, W., Kilpua, E.K.J., Liu, Y.D., Lugaz, N., Riley, P., Török, T., Vršnak, B.: 2017, The physical processes of CME/ICME evolution. Space Sci. Rev.212, 1159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez Oliveros, J.-C., Hudson, H.S., Hurford, G.J., Krucker, S., Lin, R.P., Lindsey, C., Couvidat, S., Schou, J., Thompson, W.T.: 2012, The height of a white-light flare and its hard X-ray sources. Astrophys. J. Lett.753, L26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys.25, 2453. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Cho, K.-S., Kim, Y.-H., Park, Y.-D., Park, S.-H.: 2012, Geometry of the 20 November 2003 magnetic cloud. J. Geophys. Res.117, A01101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys.290, 1371. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J.771, 82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastätter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Solar Phys.290, 1775. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J.522, 1108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J.552, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, U.V., Temmer, M., Veronig, A.M.: 2013, The Kelvin–Helmholtz instability at coronal mass ejection boundaries in the solar corona: Observations and 2.5D MHD simulations. Astrophys. J. Lett.766, L12. DOI . ADS .

    Article  ADS  Google Scholar 

  • Murphy, N.A., Raymond, J.C., Korreck, K.E.: 2011, Plasma heating during a coronal mass ejection observed by the Solar and Heliospheric Observatory. Astrophys. J.735, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res.32, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Démoulin, P., Savani, N.P., Lavraud, B., Ruffenach, A.: 2012, Implications of non-cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events. Solar Phys.278, 435. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pal, S., Nandy, D., Srivastava, N., Gopalswamy, N., Panda, S.: 2018, Dependence of coronal mass ejection properties on their solar source active region characteristics and associated flare reconnection flux. Astrophys. J.865, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Plowman, J., Kankelborg, C., Martens, P.: 2013, Fast differential emission measure inversion of solar coronal data. Astrophys. J.771, 2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Yurchyshyn, V.B.: 2005, Magnetic reconnection flux and coronal mass ejection velocity. Astrophys. J. Lett.634, L121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J.659, 758. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res.109, A09104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys.264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rodkin, D., Goryaev, F., Pagano, P., Gibb, G., Slemzin, V., Shugay, Y., Veselovsky, I., Mackay, D.H.: 2017, Origin and ion charge state evolution of solar wind transients during 4 – 7 August 2011. Solar Phys.292, 90. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rodkin, D., Slemzin, V., Zhukov, A.N., Goryaev, F., Shugay, Y., Veselovsky, I.: 2018, Single ICMEs and complex transient structures in the solar wind in 2010 – 2011. Solar Phys.293, 78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rollett, T., Möstl, C., Temmer, M., Frahm, R.A., Davies, J.A., Veronig, A.M., Vršnak, B., Amerstorfer, U.V., Farrugia, C.J., Žic, T., Zhang, T.L.: 2014, Combined multipoint remote and in situ observations of the asymmetric evolution of a fast solar coronal mass ejection. Astrophys. J. Lett.790, L6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L., Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schröder, P., Louarn, P., Dandouras, I., Penou, E.: 2008, The IMPACT Solar Wind Electron Analyzer (SWEA). Space Sci. Rev.136, 227. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Share, G.H., Murphy, R.J., White, S.M., Tolbert, A.K., Dennis, B.R., Schwartz, R.A., Smart, D.F., Shea, M.A.: 2018, Characteristics of late-phase \({>}\,100~\mbox{MeV}\) gamma-ray emission in solar eruptive events. Astrophys. J.869, 182. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shen, F., Wu, S.T., Feng, X., Wu, C.-C.: 2012, Acceleration and deceleration of coronal mass ejections during propagation and interaction. J. Geophys. Res.117, A11101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shen, J., Zhou, T., Ji, H., Wiegelmann, T., Inhester, B., Feng, L.: 2014, Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare. Astrophys. J.791, 83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Slemzin, V., Chertok, I., Grechnev, V., Ignat’ev, A., Kuzin, S., Pertsov, A., Zhitnik, I., Delaboudinière, J.-P.: 2004, Multi-wavelength observations of CME-associated structures on the Sun with the CORONAS-F/SPIRIT EUV telescope. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symp.223, 533. DOI . ADS .

    Chapter  Google Scholar 

  • Švestka, Z.: 2001, Varieties of coronal mass ejections and their relation to flares. Space Sci. Rev.95, 135. ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M.: 1990, The flare as a result of cross-interaction of loops – Causal relationship with a prominence. Solar Phys.127, 253. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: Observations and model. Solar Phys.208, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Myshyakov, I.I., Chertok, I.M., Filippov, B.P., Slemzin, V.A.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. III. Catastrophe of the eruptive filament at a magnetic null point and formation of an opposite-handedness CME. Solar Phys.289, 3747. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys.398, 801. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E., Geranios, A.: 2015, Modeling of magnetic cloud expansion. Astron. Astrophys.583, A78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys.285, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys. J. Suppl.213, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Howard, R.A., Linton, M.G.: 2016, Imaging prominence eruptions out to 1 AU. Astrophys. J.816, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res.109, A07105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Hu, Q., Abramenko, V.: 2005, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta. Space Weather3, S08C02. DOI . ADS .

    Article  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J.559, 452. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D.V. Prosovetsky, Yu.S. Shugay, B.V. Somov, and A.V. Kiselev for their assistance and discussions. We are indebted to the co-authors of the Grechnev et al. (2015) article that provided the basis for the present work. We thank the anonymous reviewer for valuable remarks.

V. Slemzin and D. Rodkin (Sections 2, 3.3, and 4.2) were funded by the Russian Science Foundation (RSF) under grant 17-12-01567. V. Grechnev, A. Kochanov, A. Uralov, V. Kiselev, and I. Myshyakov (Sections 3.1, 3.2, 3.4 – 3.6, 4.1, 4.3, and the Appendix) were funded by the RSF under grant 18-12-00172.

We thank the NASA/SDO and the AIA and HMI science teams; the NASA’s STEREO/SECCHI science and instrument teams; the teams operating RHESSI, SOHO/LASCO, S/WAVES, and the GOES satellites for the data used here. SOHO is a project of international cooperation between ESA and NASA. We are grateful to the team maintaining the CME Catalog at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. We thank the team that created and maintains the online archive of the WSA – ENLIL + Cone Model and the team that created the online Drag-Based Model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grechnev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 3.6 MB)

(MPG 2.3 MB)

(MPG 1.2 MB)

(MPG 4.5 MB)

(MPG 4.5 MB)

Appendix: General Expectations for the Fe-ion Charge State

Appendix: General Expectations for the Fe-ion Charge State

Figure 20 shows that the freeze-in process for the Fe-ion charge state starts within \(1~\mathrm{R}_{\odot }\) for higher-charge ions and at \(\gtrsim 2~\mathrm{R}_{\odot }\) for lower-charge ions. The freeze-in distance \(r_{\mathrm{fr}}\) is determined by the kinematics and plasma parameters of a structure propagating through the corona. To derive an analytical expression for \(r_{\mathrm{fr}}\) and its dependence on the parameters of an eruptive event, the plasma expansion timescale \(\tau _{\mathrm{exp}}\) should be compared with recombination time \(\tau _{\mathrm{rec}}\).

The expansion timescale is \(\tau _{\mathrm{exp}} = n_{\mathrm{e}}/| \mathrm{d}n_{\mathrm{e}}/\mathrm{d}t|\), where \(\mathrm{d}n_{ \mathrm{e}}/\mathrm{d}t = \partial n_{\mathrm{e}}/\partial t + ( \boldsymbol{{V}} \cdot \boldsymbol{\nabla })n_{\mathrm{e}}\). In stationary solar wind \(\partial /\partial t = 0\). In our case \(\partial /\partial t \neq 0\) and \(\tau _{\mathrm{exp}}\) depends on deformation of the moving plasma volume. For self-similar expansion \(n_{\mathrm{e}} = n_{0}(r_{0}/r)^{3}\), where \(r\) is a distance from the eruption center that is located near the solar surface, and \(r_{0}\) is a distance where the adiabatic regime starts. It follows from these expressions that \(|\mathrm{d}n_{\mathrm{e}}/\mathrm{d}t| = n _{\mathrm{e}}(3V/r)\), where \(V = \mathrm{d}r/\mathrm{d}t\) is the velocity of the leading edge of the erupting structure. For \(r \ge r_{0}\), the velocity is assumed to be constant (\(V = V_{0}\)) and the expansion timescale is

$$ \tau _{\mathrm{exp}} = \tau _{0\,\mathrm{exp}}(r/r_{0}), \quad \text{where}\ \tau _{0\,\mathrm{exp}} = r_{0}/3V_{0}. $$
(4)

The total recombination rate for the ion with a charge \(Z\) is \(R_{Z} = R_{\mathrm{di}} + R_{\mathrm{rad}}\) (\(\mbox{cm}^{3}\,\mbox{s}^{-1}\)), where \(R_{\mathrm{di}}\) and \(R_{\mathrm{rad}}\) are the dielectronic and radiative recombination rates, respectively. To estimate the dependence \(\tau _{\mathrm{rec}}(r)\) at temperatures of \((10^{6}\,\mbox{--}\,10^{8})~\mbox{K}\), we only consider the dielectronic recombination contribution \(R_{\mathrm{di}}\), which usually prevails at high temperatures. With the plasma parameters in Figure 19, these temperatures correspond to the distances \(r \leq 1~\mathrm{R}_{\odot }\). For the dielectronic recombination rate we use Equation 7 from Arnaud and Raymond (1992):

$$\begin{aligned} R_{\mathrm{di}}(T_{\mathrm{e}}) = T_{\mathrm{e}}^{-3/2}\sum c_{i} \exp (-E_{i}/kT_{\mathrm{e}})~\text{cm}^{3}\,\text{s}^{-1}, \end{aligned}$$

where \(T_{\mathrm{e}}\) is in K, \(kT_{\mathrm{e}}\) and \(E_{i}\) are in eV, and \(c_{i}\) is in \(\text{cm}^{3}\,\text{s}^{-1}\,\text{K}^{1.5}\). The values of \(E_{i}\) and \(c_{i}\) are tabulated. The adiabatic plasma cooling for \(r > r_{0}\) and \(T_{\mathrm{e}}=T_{0}(n_{\mathrm{e}}/n_{0})^{\gamma -1}= T_{0}(r/r_{0})^{-3(\gamma -1)}\) results in a recombination time

$$\begin{aligned} \tau _{\mathrm{rec}}^{-1} \approx \tau _{\mathrm{di}}^{-1} = n_{ \mathrm{e}}R_{\mathrm{di}} = n_{0} T_{0}^{-3/2}(r/r_{0})^{4.5(\gamma -5/3)}\sum c_{i} (\varepsilon _{0\,i})^{f^{\prime \prime }}, \end{aligned}$$

where \(\gamma \) is the adiabatic index, \(\varepsilon _{0\,i} = \exp (-E _{i}/kT_{0})\), and \(f^{\prime \prime } = (r/r_{0})^{3(\gamma -1)}\). The terms summed stand for atomic physics of the recombination process, and the product \(n_{\mathrm{e}}T_{\mathrm{e}}^{-3/2}\) is proportional to the Coulomb collision frequency \(\nu _{\mathrm{ie}}\) of an ion with thermal electrons. For \(\gamma = 5/3\) we obtain

$$\begin{aligned} \tau _{\mathrm{di}}^{-1} = n_{0} T_{0}^{-3/2}\sum c_{i} (\varepsilon _{0\,i})^{f}, \quad f = (r/r_{0})^{2}. \end{aligned}$$

To estimate the recombination time \(\tau _{\mathrm{di}}\), we consider the \(\mbox{Fe}^{16+}\) ion that is one of the first ions undergoing the freeze-in process (Figure 20). For this ion the sum \(\sum c_{i} (\varepsilon _{0\,i})^{f}\) is reduced to a single term \(c_{1} = 1.23\), \(E_{1} = 560~\text{eV}\), \(\varepsilon _{01} = \exp (-560~\text{eV/kT}_{0})\) (Arnaud and Raymond, 1992). Thus,

$$ \tau _{\mathrm{di}} = \tau _{0\,\mathrm{di}}(\varepsilon _{01})^{1-f}, \quad \tau _{0\,\mathrm{di}} = T_{0}^{3/2}/(n_{0}c_{1}\varepsilon _{01}). $$
(5)

The freeze-in distance is determined by the competition between the expansion and recombination timescales that we characterize by a ratio \(m = \tau _{\mathrm{rec}} / \tau _{\mathrm{exp}}\). The complete frozen-in situation corresponds to \(m \gg 1\). To estimate the freeze-in distance \(r_{\mathrm{fr}}\), we use the relation \(m\tau _{\mathrm{exp}} = \tau _{\mathrm{rec}} \approx \tau _{\mathrm{di}}\) with \(m = 3\). The usage of Equations 4 and 5 in this relation yields

$$ \mu ^{\mathrm{0.5}}\varepsilon _{01}^{\mu } = \varepsilon _{01}\, \tau _{0\,\mathrm{di}}/(m \tau _{0\,\mathrm{exp}}) = 3V_{0} T_{0}^{3/2}/(m r_{0} n_{0} c_{1}) \quad \text{with}\ \mu = (r_{\mathrm{fr}}/r_{0})^{2}. $$
(6)

We apply Equation 6 to our event, whose parameters are shown in Section 4.2. Taking the electron density and temperature at \(r_{0} = 0.34~\mathrm{R}_{\odot }\) to be \(n_{0} = 10^{9}~\mbox{cm}^{-3}\) and \(T_{0} = 11.6\times 10^{6}~\text{K}\) (\(kT_{0}= 1~\text{keV}\)), and \(V_{0} = 860~\text{km}\,\text{s} ^{-1}\), we get \(\varepsilon _{01} = \exp (-0.56) = 0.67\) and \(\tau _{0\,\mathrm{di}} = 46~\text{s}\). With \(m = 3\), Equation 6 takes a form \(\mu ^{0.5}0.67^{\mu } = 0.11\); thus, \(\mu ^{0.5} = r_{ \mathrm{fr}}/r_{0} \approx 2.85\) and \(r_{\mathrm{fr}} \approx 2.85r _{0} \approx 0.97~\mathrm{R}_{\odot }\). As follows from Section 4.2, \(\mbox{Fe}^{16+}\) ions freeze-in earlier than the mean charge \(\langle Q_{\mathrm{Fe}} \rangle \), whose variations are shown in Figure 19d. The main decrease in \(\langle Q_{ \mathrm{Fe}} \rangle \) occurs within \(r < r_{\mathrm{fr}}\). Note that the solutions of Equation 6 for \(m = 2\) and \(m = 1\) are the values \(r_{\mathrm{fr}} \approx 2.6 r_{0} \approx 0.88~\mathrm{R} _{\odot }\) and \(r_{\mathrm{fr}} \approx 2.15 r_{0} \approx 0.73~\mathrm{R}_{\odot }\), respectively. The latter value is not very different from \(r \approx 0.5~\mathrm{R}_{\odot }\) where the curves \(\tau _{\mathrm{exp}}\) and \(\tau _{\mathrm{rec}}\) in Figure 20 calculated for \(\mbox{Fe}^{16+}\) intersect. The results obtained from Equation 6 are reasonably close to the numerical calculations presented in Section 4.2.

For generalized estimates, Equation 6 can be simplified by replacing the \(r_{0}/V_{0}\) ratio with \(\tau _{\mathrm{acc}}/2\), where \(\tau _{\mathrm{acc}}\) is a characteristic time, when an eruption moving with an effective constant acceleration [\(a\)] reaches the velocity \(V_{0} = a\tau _{\mathrm{acc}}\); \(r_{0} = a\tau _{\mathrm{acc}}^{2}/2\). This estimate of \(r_{0}\) implies the plasma heating only at the acceleration stage of the erupting filament. For a typical \(\tau _{\mathrm{acc}} \approx 300~\text{s}\) and \(V_{0} \approx 10^{3}~\text{km}\,\text{s} ^{-1}\) in eruptions from active regions we estimate \(r_{0} \approx 0.2~\mathrm{R}_{\odot }\), which is slightly different from \(r_{0} \approx 0.34~\mathrm{R}_{\odot }\) obtained in the numerical modeling of the charge-state evolution in Section 4.2. With \(m = 3\), Equation 6 transforms to the form

$$ \mu ^{\mathrm{0.5}}(\varepsilon _{01})^{\mu } \approx 2T_{0}^{3/2}/(c _{1} n_{0} \tau _{\mathrm{acc}}) \propto (\tau _{\mathrm{acc}} \nu _{0\,\mathrm{ie}})^{-1} \quad \text{with}\ \nu _{0\,\mathrm{ie}} = \nu _{\mathrm{ie}}\ (r = r_{0}). $$
(7)

The right part of this equation does not contain \(r_{0}\), unlike Equation 6. Calculations show that an increase in the right parts of Equations 6 and 7 corresponds to a decrease in the \(r_{\mathrm{fr}}/r_{0}\) ratio. Case studies of eruptions from active regions show that their temperatures at the acceleration stage reach \({\approx}\, 10^{7}~\text{K}\) (\(kT_{0} \approx 1~\text{keV}\); e.g. Glesener et al., 2013; Grechnev et al., 2016). For \(n_{0} = 10^{9}~\mbox{cm} ^{-3}\) Equation 7 yields \(\mu ^{0.5}0.67^{\mu } \approx 0.22\), \(r_{\mathrm{fr}}/r_{0} \approx 2.45\), and \(r_{\mathrm{fr}} \approx 0.5~\mathrm{R}_{\odot }\). The dependence on \(n_{0}\) is weak; with \(n_{0} = 10^{10}~\mbox{cm}^{-3}\) and other parameters unchanged, \(r_{\mathrm{fr}} \approx 0.7~\mathrm{R}_{\odot }\).

Thus, the high ionic charge states of iron are expected to form in fast CMEs near the Sun and not to change afterwards considerably. This conclusion is consistent with the results of the numerical calculations by Rodkin et al. (2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechnev, V.V., Kochanov, A.A., Uralov, A.M. et al. Development of a Fast CME and Properties of a Related Interplanetary Transient. Sol Phys 294, 139 (2019). https://doi.org/10.1007/s11207-019-1529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1529-0

Keywords

Navigation