What the Sudden Death of Solar Cycles Can Tell Us About the Nature of the Solar Interior

Abstract

We observe the abrupt end of solar-activity cycles at the Sun’s Equator by combining almost 140 years of observations from ground and space. These “terminator” events appear to be very closely related to the onset of magnetic activity belonging to the next solar cycle at mid-latitudes and the polar-reversal process at high latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation – but it could be shorter. Utilizing uniquely comprehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics suggest that information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: for example gravity waves on the solar tachocline, or that the magnetic fields present in the Sun’s convection zone could be very large, with a poloidal field strengths reaching 50 kG – considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of the mechanism responsible, the rapid timescales demonstrated by the Sun’s global magnetic-field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI . ADS .

    ADS  Article  Google Scholar 

  2. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI . ADS .

    ADS  Article  Google Scholar 

  3. Barnes, G., MacGregor, K.B., Charbonneau, P.: 1998, Gravity waves in a magnetized shear layer. Astrophys. J. Lett. 498, L169. DOI . ADS .

    ADS  Article  Google Scholar 

  4. Barnston, A.G., Livezey, R.E.: 1987, Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115(6), 1083. DOI .

    ADS  Article  Google Scholar 

  5. Basseville, M., Nikiforov, I.V.: 1993, Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Upper Saddle River. ISBN 0-13-126780-9.

    Google Scholar 

  6. Bocchino, G.: 1933, Migrazione delle protuberanze durante il ciclo undecennale dell’attività solare. Mem. Soc. Astron. Ital. 6, 479. ADS .

    ADS  Google Scholar 

  7. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7, 3. DOI . ADS .

    ADS  Article  Google Scholar 

  8. Cliver, E.W.: 2014, The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci. Rev. 186, 169. DOI . ADS .

    ADS  Article  Google Scholar 

  9. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI . ADS .

    ADS  Article  Google Scholar 

  10. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    ADS  Article  Google Scholar 

  11. Dikpati, M., McIntosh, S.W., Chatterjee, S., Banerjee, D., Yellin-Bergovoy, R., Srivastava, A.: 2019, Triggering the birth of new cycle’s sunspots by solar tsunami. Sci. Rep. 9, 2035. DOI . ADS .

    ADS  Article  Google Scholar 

  12. Elmore, D.F., Rimmele, T., Casini, R., Hegwer, S., Kuhn, J., Lin, H., McMullin, J.P., Reardon, K., Schmidt, W., Tritschler, A., Wöger, F.: 2014, The Daniel K. Inouye Solar Telescope first light instruments and critical science plan. In: Ground-Based and Airborne Instrumentation for Astronomy V, Proc. Soc. Phot. Int. 9147, 914707. DOI . ADS .

    Google Scholar 

  13. Fan, Y., Fang, F.: 2014, A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35. DOI . ADS .

    ADS  Article  Google Scholar 

  14. Ferriz-Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949. ADS .

    ADS  Google Scholar 

  15. Gibson, S.E.: 2018, Solar prominences: theory and models. Liv. Rev. Solar Phys. 15(1), 7. DOI .

    ADS  Article  Google Scholar 

  16. Golub, L.: 1980, X-ray bright points and the solar cycle. Phil. Trans. Roy. Soc. A 297, 595. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Golub, L., Vaiana, G.S.: 1978, Differential rotation rates for short-lived regions of emerging magnetic flux. Astrophys. J. Lett. 219, L55. DOI . ADS .

    ADS  Article  Google Scholar 

  18. Golub, L., Krieger, A.S., Silk, J.K., Timothy, A.F., Vaiana, G.S.: 1974, Solar X-ray bright points. Astrophys. J. Lett. 189, L93. DOI . ADS .

    ADS  Article  Google Scholar 

  19. Hale, G.E., Nicholson, S.B.: 1925, The law of sun-spot polarity. Astrophys. J. 62, 270. DOI . ADS .

    ADS  Article  Google Scholar 

  20. Hansen, R., Hansen, S.: 1975, Global distribution of filaments during solar cycle No. 20. Solar Phys. 44, 225. DOI . ADS .

    ADS  Article  Google Scholar 

  21. Hathaway, D.H.: 2010, The solar cycle. Liv. Rev. Solar Phys. 7, 1. DOI . ADS .

    ADS  Article  Google Scholar 

  22. Hathaway, D.H., Upton, L., Colegrove, O.: 2013, Giant convection cells found on the Sun. Science 342, 1217. DOI . ADS .

    ADS  Article  Google Scholar 

  23. Hotta, H., Rempel, M., Yokoyama, T.: 2016, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427. DOI . ADS .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    ADS  Article  Google Scholar 

  25. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    ADS  Article  Google Scholar 

  27. Matsuno, T.: 1966, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44, 25.

    Article  Google Scholar 

  28. Maunder, E.W.: 1904, Note on the Distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747. DOI . ADS .

    ADS  Article  Google Scholar 

  29. McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys. 228, 285. DOI . ADS .

    ADS  Article  Google Scholar 

  30. McIntosh, S.W., Leamon, R.J.: 2017, Deciphering solar magnetic activity: Spotting solar cycle 25. Front. Astron. Space Sci. 4, 4. DOI . ADS .

    ADS  Article  Google Scholar 

  31. McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric asymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys. J. 765, 146. DOI . ADS .

    ADS  Article  Google Scholar 

  32. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity, I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI . ADS .

    ADS  Article  Google Scholar 

  33. McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI . ADS .

    ADS  Article  Google Scholar 

  34. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Comm. 6, 6491. DOI . ADS .

    ADS  Article  Google Scholar 

  35. McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron. 1, 0086. DOI . ADS .

    ADS  Article  Google Scholar 

  36. Moreno-Insertis, F.: 1983, Rise times of horizontal magnetic flux tubes in the convection zone of the sun. Astron. Astrophys. 122, 241. ADS .

    ADS  Google Scholar 

  37. Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv. 3(7), e1602056. DOI .

    ADS  Article  Google Scholar 

  38. Pedlosky, J.: 1982, Geophysical Fluid Dynamics, Springer, Berlin. ADS .

    Google Scholar 

  39. Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., Smolarkiewicz, P.K.: 2011, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46. DOI . ADS .

    ADS  Article  Google Scholar 

  40. Saba, J.L.R., Strong, K.T., Slater, G.L.: 2005, Can we predict when the next solar cycle is about to take off? Mem. Soc. Astron. Ital. 76, 1034. ADS .

    ADS  Google Scholar 

  41. Schonfeld, S.J., White, S.M., Hock-Mysliwiec, R.A., McAteer, R.T.J.: 2017, The slowly varying corona, I: Daily differential emission measure distributions derived from EVE spectra. Astrophys. J. 844(2), 163.

    ADS  Article  Google Scholar 

  42. Simoniello, R., Tripathy, S.C., Jain, K., Hill, F.: 2016, A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle. Astrophys. J. 828, 41. DOI . ADS .

    ADS  Article  Google Scholar 

  43. Spiegel, E.A., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106. ADS .

    ADS  Google Scholar 

  44. Strong, K.T., Saba, J.L.R.: 2009, A new approach to solar cycle forecasting. Adv. Space Res. 43, 756. DOI . ADS .

    ADS  Article  Google Scholar 

  45. Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394. DOI . ADS .

    ADS  Article  Google Scholar 

  46. Tlatov, A.G., Kuzanyan, K.M., Vasil’yeva, V.V.: 2016, Tilt angles of solar filaments over the period of 1919 – 2014. Solar Phys. 291, 1115. DOI . ADS .

    ADS  Article  Google Scholar 

  47. Trenberth, K.E., Branstator, G.W., Karoly, D., Kumar, A., Lau, N.-C., Ropelewski, C.: 1997, Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103(C7), 14291. DOI .

    ADS  Article  Google Scholar 

  48. Ulrich, R.K.: 2010, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot Solar Tower Telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658. DOI . ADS .

    ADS  Article  Google Scholar 

  49. Wilson, P.R.: 1994, Solar and Stellar Activity Cycles, Cambridge University Press, Cambridge. ADS .

    Google Scholar 

  50. Wilson, P.R., Altrock, R.C., Harvey, K.L., Martin, S.F., Snodgrass, H.B.: 1988, The extended solar activity cycle. Nature 333, 748. DOI . ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Michael J. Thompson – scientist, leader, mentor, colleague and friend. Special thanks to Dipankar Bannerjee, Ed Cliver, Subhamoy Chatterjee, Abhishek Srivastava, Ian Hewins, and many others for providing feedback on the material presented. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. The compilation of feature databases used was supported by NASA grant NNX08AU30G. We acknowledge support from Indo-US (IUSSTF) Joint Networked R&D Center IUSSTF-JC-011-2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott W. McIntosh.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors indicate that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McIntosh, S.W., Leamon, R.J., Egeland, R. et al. What the Sudden Death of Solar Cycles Can Tell Us About the Nature of the Solar Interior. Sol Phys 294, 88 (2019). https://doi.org/10.1007/s11207-019-1474-y

Download citation

Keywords

  • Solar cycle, observations
  • Interior, convective zone
  • Interior, tachocline