Skip to main content
Log in

What the Sudden Death of Solar Cycles Can Tell Us About the Nature of the Solar Interior

  • Editor’s Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We observe the abrupt end of solar-activity cycles at the Sun’s Equator by combining almost 140 years of observations from ground and space. These “terminator” events appear to be very closely related to the onset of magnetic activity belonging to the next solar cycle at mid-latitudes and the polar-reversal process at high latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation – but it could be shorter. Utilizing uniquely comprehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics suggest that information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: for example gravity waves on the solar tachocline, or that the magnetic fields present in the Sun’s convection zone could be very large, with a poloidal field strengths reaching 50 kG – considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of the mechanism responsible, the rapid timescales demonstrated by the Sun’s global magnetic-field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, G., MacGregor, K.B., Charbonneau, P.: 1998, Gravity waves in a magnetized shear layer. Astrophys. J. Lett. 498, L169. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnston, A.G., Livezey, R.E.: 1987, Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115(6), 1083. DOI .

    Article  ADS  Google Scholar 

  • Basseville, M., Nikiforov, I.V.: 1993, Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Upper Saddle River. ISBN 0-13-126780-9.

    MATH  Google Scholar 

  • Bocchino, G.: 1933, Migrazione delle protuberanze durante il ciclo undecennale dell’attività solare. Mem. Soc. Astron. Ital. 6, 479. ADS .

    ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2014, The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci. Rev. 186, 169. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dikpati, M., McIntosh, S.W., Chatterjee, S., Banerjee, D., Yellin-Bergovoy, R., Srivastava, A.: 2019, Triggering the birth of new cycle’s sunspots by solar tsunami. Sci. Rep. 9, 2035. DOI . ADS .

    Article  ADS  Google Scholar 

  • Elmore, D.F., Rimmele, T., Casini, R., Hegwer, S., Kuhn, J., Lin, H., McMullin, J.P., Reardon, K., Schmidt, W., Tritschler, A., Wöger, F.: 2014, The Daniel K. Inouye Solar Telescope first light instruments and critical science plan. In: Ground-Based and Airborne Instrumentation for Astronomy V, Proc. Soc. Phot. Int. 9147, 914707. DOI . ADS .

    Chapter  Google Scholar 

  • Fan, Y., Fang, F.: 2014, A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ferriz-Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949. ADS .

    ADS  Google Scholar 

  • Gibson, S.E.: 2018, Solar prominences: theory and models. Liv. Rev. Solar Phys. 15(1), 7. DOI .

    Article  ADS  Google Scholar 

  • Golub, L.: 1980, X-ray bright points and the solar cycle. Phil. Trans. Roy. Soc. A 297, 595. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Vaiana, G.S.: 1978, Differential rotation rates for short-lived regions of emerging magnetic flux. Astrophys. J. Lett. 219, L55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Krieger, A.S., Silk, J.K., Timothy, A.F., Vaiana, G.S.: 1974, Solar X-ray bright points. Astrophys. J. Lett. 189, L93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hale, G.E., Nicholson, S.B.: 1925, The law of sun-spot polarity. Astrophys. J. 62, 270. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hansen, R., Hansen, S.: 1975, Global distribution of filaments during solar cycle No. 20. Solar Phys. 44, 225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Liv. Rev. Solar Phys. 7, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L., Colegrove, O.: 2013, Giant convection cells found on the Sun. Science 342, 1217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hotta, H., Rempel, M., Yokoyama, T.: 2016, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matsuno, T.: 1966, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44, 25.

    Article  Google Scholar 

  • Maunder, E.W.: 1904, Note on the Distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys. 228, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J.: 2017, Deciphering solar magnetic activity: Spotting solar cycle 25. Front. Astron. Space Sci. 4, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric asymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys. J. 765, 146. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity, I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Comm. 6, 6491. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron. 1, 0086. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moreno-Insertis, F.: 1983, Rise times of horizontal magnetic flux tubes in the convection zone of the sun. Astron. Astrophys. 122, 241. ADS .

    ADS  Google Scholar 

  • Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv. 3(7), e1602056. DOI .

    Article  ADS  Google Scholar 

  • Pedlosky, J.: 1982, Geophysical Fluid Dynamics, Springer, Berlin. ADS .

    Book  Google Scholar 

  • Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., Smolarkiewicz, P.K.: 2011, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saba, J.L.R., Strong, K.T., Slater, G.L.: 2005, Can we predict when the next solar cycle is about to take off? Mem. Soc. Astron. Ital. 76, 1034. ADS .

    ADS  Google Scholar 

  • Schonfeld, S.J., White, S.M., Hock-Mysliwiec, R.A., McAteer, R.T.J.: 2017, The slowly varying corona, I: Daily differential emission measure distributions derived from EVE spectra. Astrophys. J. 844(2), 163.

    Article  ADS  Google Scholar 

  • Simoniello, R., Tripathy, S.C., Jain, K., Hill, F.: 2016, A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle. Astrophys. J. 828, 41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spiegel, E.A., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106. ADS .

    ADS  Google Scholar 

  • Strong, K.T., Saba, J.L.R.: 2009, A new approach to solar cycle forecasting. Adv. Space Res. 43, 756. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tlatov, A.G., Kuzanyan, K.M., Vasil’yeva, V.V.: 2016, Tilt angles of solar filaments over the period of 1919 – 2014. Solar Phys. 291, 1115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Trenberth, K.E., Branstator, G.W., Karoly, D., Kumar, A., Lau, N.-C., Ropelewski, C.: 1997, Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103(C7), 14291. DOI .

    Article  ADS  Google Scholar 

  • Ulrich, R.K.: 2010, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot Solar Tower Telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilson, P.R.: 1994, Solar and Stellar Activity Cycles, Cambridge University Press, Cambridge. ADS .

    Book  Google Scholar 

  • Wilson, P.R., Altrock, R.C., Harvey, K.L., Martin, S.F., Snodgrass, H.B.: 1988, The extended solar activity cycle. Nature 333, 748. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Michael J. Thompson – scientist, leader, mentor, colleague and friend. Special thanks to Dipankar Bannerjee, Ed Cliver, Subhamoy Chatterjee, Abhishek Srivastava, Ian Hewins, and many others for providing feedback on the material presented. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. The compilation of feature databases used was supported by NASA grant NNX08AU30G. We acknowledge support from Indo-US (IUSSTF) Joint Networked R&D Center IUSSTF-JC-011-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. McIntosh.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors indicate that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntosh, S.W., Leamon, R.J., Egeland, R. et al. What the Sudden Death of Solar Cycles Can Tell Us About the Nature of the Solar Interior. Sol Phys 294, 88 (2019). https://doi.org/10.1007/s11207-019-1474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1474-y

Keywords

Navigation