Skip to main content
Log in

Solar Cycle Variation of the Heliospheric Plasma Sheet Thickness

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Past independent studies of the heliospheric plasma sheet (HPS) have shown that the thickness is highly variable, ranging from \(\approx 3.8 \times 10^{5}\) to \(8.9 \times 10^{6}\) km. Here we conduct a survey of the previous results and find a solar cycle dependence – where the HPS tends to be wider during solar-minimum years and narrower during solar-maximum years. The HPS is thicker near solar minimum than near solar maximum by a factor of 1.6 (in Solar Cycle 23) and 8 (in Solar Cycle 24). We also found that the average HPS thickness in 2007 (near the minimum of Solar Cycle 23/24) was almost ten times larger than that in 1995 (near minimum of Solar Cycle 22/23), and it was associated with a weak polar magnetic field in 2007. Based on the solar-surface-field measurements, we found that the average solar magnetic-field strength [\(| \boldsymbol{B}|\)] at 2.5 solar radii [R] was \(\approx 40\)% larger in 1995 than in 2007 (0.22 gauss versus 0.16 gauss). We also found a larger (\(\approx 27 \)%) magnetic pressure-gradient force in 1995 than in 2007. Because this magnetic gradient force points toward the Equator in the corona (which is probably also true farther out), a wider HPS is expected to occur in 2007 than in 1995, at least close to the Sun. This result supports the so-called heliospheric plasma-sheet inflation hypothesis, i.e. the HPS is wider if the Sun’s polar field is weaker and narrower if the Sun’s polar field is stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baumjohann, W., Paschmann, G., Nagai, T.: 1992, Thinning and expansion of the plasma sheet. J. Geophys. Res. 97, 17173. DOI .

    Article  ADS  Google Scholar 

  • Bavassano, B., Woo, R., Bruno, R.: 1997, Heliospheric plasma sheet and coronal streamers. Geophys. Res. Lett. 24(13), 1655. DOI .

    Article  ADS  Google Scholar 

  • Bevington, P.R., Robinson, D.K.: 2003, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. McGraw–Hill, New York.

    Google Scholar 

  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Wilcox, J.M.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU. J. Geophys. Res. 86(A6), 4565. DOI .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Huang, C.-L., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004, Heliospheric plasma sheets. J. Geophys. Res. 109, A03107. DOI .

    Article  ADS  Google Scholar 

  • Fitzenreiter, R.J., Burlaga, L.F.: 1978, Structure of current sheets in magnetic holes at 1 AU. J. Geophys. Res. 83, 5579. DOI .

    Article  ADS  Google Scholar 

  • Foullon, C., Lavraud, B., Wardle, N.C., Owen, C.J., Kucharek, H., Fazakerley, A.N., et al.: 2009, The Apparent layered structure of the heliospheric current sheet: Multi-spacecraft observations. Solar Phys. 259, 389. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C., Borrini, G., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438. DOI .

    Article  ADS  Google Scholar 

  • Intriligator, D.S., Webber, W.R.: 2014, Analyses of Voyager 2 plasma observations in the heliosheath: Near the heliospheric current sheet and streamer belt. In: Hu, Q., Zank, G.P. (eds.) Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere, CS-484, 84. Astron. Soc. Pacific, San Francisco. ADS .

    Google Scholar 

  • Lepping, R.P., Szabo, A., Peredo, M., Hoeksema, J.T.: 1996, Large-scale properties and solar connection of the heliospheric current and plasma sheets: Wind observations. Geophys. Res. Lett. 23, 1199. DOI .

    Article  ADS  Google Scholar 

  • Liou, K., Wu, C.-C.: 2016, A possible cause of the diminished solar wind during the solar cycle 23 – 24 minimum. Solar Phys. 291, 3777. DOI .

    Article  ADS  Google Scholar 

  • Simunac, K.D.C., Galvin, A.B., Farrugia, C.J., Kistler, L.M., Kucharek, H., Lavraud, B., et al.: 2012, The heliospheric plasma sheet observed in situ by three spacecraft over four solar rotations. Solar. Phys. 281, 42. DOI .

    Article  Google Scholar 

  • Smith, E.: 2001, The heliospheric current sheet. J. Geophys. Res. 106, 15819. DOI .

    Article  ADS  Google Scholar 

  • Smith, E., Zhou, X.: 2007, Slow mode waves in the heliospheric plasma sheet. In: Shaikh, D., Zank, G.P. (eds.) Turbulence and Nonlinear Processes in Astrophysical Plasmas, AIP CS-932, 144. DOI .

    Chapter  Google Scholar 

  • Suess, S.T., Ko, Y.-K., Steiger, R., Moore, R.L.: 2009, Quiescent current sheets in the solar wind and origins of slow wind. J. Geophys. Res. 114, A04103. DOI:10.1029/2008JA013704.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99(A4), 6667. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Plunkett, S., Craig, D.F., Wu, S.T.: 2013, Investigation of solar/heliospheric anomalies associated with solar minimum during 2007 – 2008. Terr. Atmos. Oceanic Sci. 24, 243.DOI. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Wu, S.T., Dryer, M.: 2016, Heliospheric plasma sheet inflation as a cause of solar wind anomaly during the solar cycle 23 – 24 minimum. In: Wang, L., Bruno, R., Möbius, E., Vourlidas, A., Zank, G.P. (eds.) Proc. Solar Wind 14, AIP CP-1720, 040021. DOI .

    Chapter  Google Scholar 

  • Wu, C.-C., Liou, K., Lepping, R.P., Vourlidas, A., Plunkett, S., Socker, D., Wu, S.T.: 2017, Observation of an extremely large-density heliospheric plasma sheet compressed by an interplanetary shock at 1 AU. Solar Phys. 292, 109. DOI .

    Article  ADS  Google Scholar 

  • Zhou, X.-Y., Smith, E.J., Winterhalter, D., McComas, D.J., Skoug, R.M., Goldstein, B.E., Smith, C.W.: 2005, Morphology and evolution of the heliospheric current and plasma sheets from 1 to 5 AU. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Proc. Solar Wind 11 / SOHO 16, Connecting Sun and Heliosphere SP-592, ESA, Noordwijk, 659. ISBN 92-9092-903-0.

    Google Scholar 

Download references

Acknowledgments

We thank the World Data Center SILSO (Sunspot Index and Long-term Solar Observations), Royal Observatory of Belgium, Brussels for proving sunspot data, and Y.-M. Wang of the Naval Research Laboratory for providing the derived solar magnetic-field data at 2.5 solar radii. The work of C.-C. Wu was supported partially by the Chief of Naval Research, and the NASA 80HQTR18T0023, HSWO2R17-0005, and 80HQTR19T0062 grants. The work of K. Liou was supported by the NSF grant 1743118 to the Johns Hopkins University Applied Physics Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chun Wu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CC., Liou, K. & Lepping, R.P. Solar Cycle Variation of the Heliospheric Plasma Sheet Thickness. Sol Phys 294, 90 (2019). https://doi.org/10.1007/s11207-019-1464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1464-0

Keywords

Navigation