A Model of a Tidally Synchronized Solar Dynamo

Abstract

We discuss a solar dynamo model of Tayler–Spruit type whose \(\Omega \)-effect is conventionally produced by a solar-like differential rotation but whose \(\alpha \)-effect is assumed to be periodically modulated by planetary tidal forcing. This resonance-like effect has its rationale in the tendency of the current-driven Tayler instability to undergo intrinsic helicity oscillations which, in turn, can be synchronized by periodic tidal perturbations. Specifically, we focus on the 11.07-years alignment periodicity of the tidally dominant planets Venus, Earth, and Jupiter, whose persistent synchronization with the solar dynamo is briefly touched upon. The typically emerging dynamo modes are dipolar fields, oscillating with a 22.14-years period or pulsating with a 11.07-years period, but also quadrupolar fields with corresponding periodicities. In the absence of any constant part of \(\alpha \), we prove the sub-critical nature of this Tayler–Spruit type dynamo. The resulting amplitude of the \(\alpha \) oscillation that is required for dynamo action turns out to lie in the order of \(1~\mbox{m}\,\mbox{s}^{-1}\), which seems not implausible for the Sun. When starting with a more classical, non-periodic part of \(\alpha \), even less of the oscillatory \(\alpha \) part is needed to synchronize the entire dynamo. Typically, the dipole solutions show butterfly diagrams, although their shapes are not convincing yet. Phase coherent transitions between dipoles and quadrupoles, which are reminiscent of the observed behavior during the Maunder minimum, can easily be triggered by long-term variations of dynamo parameters, but may also occur spontaneously even for fixed parameters. Further interesting features of the model are the typical second intensity peak and the intermittent appearance of reversed helicities in both hemispheres.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI .

    ADS  Article  Google Scholar 

  2. Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI .

    ADS  Article  Google Scholar 

  3. Bazylevskaya, G.A., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Y.I.: 2016, On the relationship between quasi-biennial variations of solar activity, the heliospheric magnetic field and cosmic rays. Cosm. Res. 54, 171. DOI .

    ADS  Article  Google Scholar 

  4. Beer, J., Tobias, S., Weiss, N.: 1998, An active Sun throughout the Maunder minimum. Solar Phys. 181, 237. DOI .

    ADS  Article  Google Scholar 

  5. Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration Sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307.

    Google Scholar 

  6. Bonanno, A., Guarnieri, F.: 2017, On the possibility of helicity oscillations in the saturation of the Tayler instability. Astron. Nachr. 338, 516. DOI .

    ADS  Article  Google Scholar 

  7. Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI .

    ADS  Article  Google Scholar 

  8. Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI .

    ADS  Article  Google Scholar 

  9. Cameron, R.H., Schüssler, M.: 2014, No evidence for planetary influence on solar activity. Astron. Astrophys. 557, A83. DOI .

    Article  Google Scholar 

  10. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI .

    ADS  Article  Google Scholar 

  11. Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., Tomczyk, S.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445. DOI .

    ADS  Article  Google Scholar 

  12. Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI .

    ADS  Article  Google Scholar 

  13. Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI .

    ADS  Article  Google Scholar 

  14. Cionco, R.G., Soon, W.: 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the Sun-planets interaction. New Astron. 34, 164. DOI .

    ADS  Article  Google Scholar 

  15. Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI .

    ADS  Article  Google Scholar 

  16. De Jager, C., Versteegh, G.: 2005, Do planetary motions drive solar variability? Solar Phys. 229, 175. DOI .

    ADS  Article  Google Scholar 

  17. Dicke, R.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676.

    ADS  Article  Google Scholar 

  18. Dikpati, M., Cally, P.S., McIntosh, S.W., Heifetz, E.: 2017, The origin of the “Seasons” in space weather. Sci. Rep. 7, 14750. DOI .

    ADS  Article  Google Scholar 

  19. Eckhardt, B., Faisst, H., Schmiegel, A., Schneider, T.M.: 2008, Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. Roy. Soc. A 366, 1297. DOI .

    ADS  MathSciNet  Article  Google Scholar 

  20. Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949.

    ADS  Google Scholar 

  21. Galindo, V.: 2018, personal communication.

  22. Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI .

    ADS  Article  Google Scholar 

  23. Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI .

    ADS  Article  Google Scholar 

  24. Giesecke, A., Stefani, F., Herault, J.: 2017, Parametric instability in periodically perturbed dynamos. Phys. Rev. Fluids 2, 053701.

    ADS  Article  Google Scholar 

  25. Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. J. 25, 18. DOI .

    Article  Google Scholar 

  26. Gough, D.O.: 1990, On possible origins of relatively short-term variations in the solar structure. Phil. Trans. Roy. Soc. London A 330, 627. DOI .

    ADS  Article  Google Scholar 

  27. Grandpierre, A.: 1996, On the origin of solar cycle periodicity. Astrophys. Space Sci. 243, 393. DOI .

    ADS  Article  Google Scholar 

  28. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI .

    ADS  Article  Google Scholar 

  29. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI .

    ADS  Article  Google Scholar 

  30. Hoyng, P.: 1996, Is the solar cycle timed by a clock? Solar Phys. 169, 253.

    ADS  Article  Google Scholar 

  31. Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, New York.

    Google Scholar 

  32. Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets, NASA/TM-2007-214817.

  33. Jennings, R.L., Weiss, N.O.: 1991, Symmetry breaking in stellar dynamos. Mon. Not. Roy. Astron. Soc. 252, 249. DOI .

    ADS  Article  MATH  Google Scholar 

  34. Jones, C.A.: 1983, Model equations for the solar dynamo. In: Soward, A.M. (ed.) Stellar and Planetary Magnetism, Gordon and Breach, New York, 193.

    Google Scholar 

  35. Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193. DOI .

    ADS  Article  Google Scholar 

  36. Jouve, L., Gastine, T., Lignieres, F.: 2015, Three-dimensional evolution of magnetic fields in a differentially rotating stellar radiative zone. Astron. Astrophys. 575, 21. DOI .

    Article  Google Scholar 

  37. Kagan, D., Wheeler, J.C.: 2014, The role of the magnetorotational instability in the Sun. Astrophys. J. 787, A106. DOI .

    Article  Google Scholar 

  38. Karak, B.B., Mandal, S., Banarjee, D.: 2018, Double-peaks of the solar cycle: an explanation from a dynamo model. Astrophys. J. 866, 17. DOI .

    ADS  Article  Google Scholar 

  39. Kuzanyan, K.M., Sokoloff, D.: 1997, Half-width of a solar dynamo wave in Parker’s migratory dynamo. Solar Phys. 173, 1. DOI .

    ADS  Article  Google Scholar 

  40. Mamatsashvili, G., Stefani, F., Hollerbach, R., Rüdiger, G.: 2018, New type of axisymmetric helical magnetorotational instability in rotating flows with positive shear. Phys. Rev. Lett., submitted. arXiv .

  41. McCracken, K.G., Beer, J., Steinhilber, F.: 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Solar Phys. 289, 3207. DOI .

    ADS  Article  Google Scholar 

  42. McIntosh, S.W.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI .

    ADS  Article  Google Scholar 

  43. McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nature Astron. 11, 0086. DOI .

    Article  Google Scholar 

  44. Miyahara, H., Masuda, K., Muraki, Y., Kitagawa, H., Nakamura, T.: 2006, Variation of solar cyclicity during the Spoerer minimum. J. Geophys. Res. 111, A03103. DOI .

    ADS  Article  Google Scholar 

  45. Moss, D.L., Sokoloff, D.: 2017, Parity fluctuations in stellar dynamos. Astron. Rep. 61, 878. DOI .

    ADS  Article  Google Scholar 

  46. Obridko, V.N., Shelting, B.D.: 2007, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv. Space Res. 40, 1006. DOI .

    ADS  Article  Google Scholar 

  47. Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI .

    ADS  Article  Google Scholar 

  48. Okhlopkov, V.P.: 2016, The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity. Moscow Univ. Phys. Bull. 71, 440. DOI .

    ADS  Article  Google Scholar 

  49. Oláh, K., Kővári, Zs., Petrovay, K., Soon, W., Baliunas, S., Kolláth, Z., Vida, K.: 2016, Magnetic cycles at different ages of stars. Astron. Astrophys. 590, A133. DOI .

    ADS  Article  Google Scholar 

  50. Öpik, E.: 1972, Solar-planetary tides and sunspots. I. Astron. J. 10, 298.

    Google Scholar 

  51. Palus, M., Kurths, J., Schwarz, U., Novotna, D., Charvatova, I.: 2000, Is the solar activity cycle synchronized with the solar inertial motion? Int. J. Bifurc. Chaos 10, 2519. DOI .

    Article  MATH  Google Scholar 

  52. Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .

    ADS  MathSciNet  Article  Google Scholar 

  53. Pipin, V.V., Zhang, H., Sokoloff, D.D., Kuzanyan, K.M., Gao, Y.: 2013, The origin of the helicity hemispheric sign rule reversals in the mean-field solar-type dynamo. Mon. Not. Roy. Astron. Soc. 435, 2581. DOI .

    ADS  Article  Google Scholar 

  54. Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI .

    ADS  Article  Google Scholar 

  55. Poluianov, S., Usoskin, I.: 2014, Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Solar Phys. 289, 2333. DOI .

    ADS  Article  Google Scholar 

  56. Proctor, M.R.E.: 2007, Effects of fluctuations on \(\alpha \Omega \) dynamo models. Mon. Not. Roy. Astron. Soc. 382, L39. DOI .

    Google Scholar 

  57. Roald, C.B., Thomas, J.H.: 1997, Simple solar dynamo models with variable \(\alpha \) and \(\omega \) effects. Mon. Not. Roy. Astron. Soc. 288, 551. DOI .

    Google Scholar 

  58. Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley, Berlin.

    Google Scholar 

  59. Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M., Stefani, F.: 2015a, Stability and instability of hydromagnetic Taylor-Couette flows. Phys. Rep. 741, 1. DOI .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015b, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI .

    ADS  Article  Google Scholar 

  61. Ruzmaikin, A., Feynman, J.: 2015, The Earth’s climate at minima of centennial Gleissberg cycles. Adv. Space Res. 56, 1590. DOI .

    ADS  Article  Google Scholar 

  62. Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .

    ADS  Article  Google Scholar 

  63. Scafetta, N.: 2013, Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321. DOI .

    ADS  Article  Google Scholar 

  64. Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI .

    ADS  Article  Google Scholar 

  65. Scafetta, N., Milani, F., Bianchini, A., Ortolani, S.: 2016, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Sci. Rev. 162, 24. DOI .

    Article  Google Scholar 

  66. Schmalz, S., Stix, M.: 1991, An alpha–Omega dynamo with order and chaos. Astron. Astrophys. 245, 654.

    ADS  MATH  Google Scholar 

  67. Schove, D.J.: 1955, The sunspot cycle, 649 B.C. to A.D. 2000. J. Geophys. Res. 60, 127.

    ADS  Article  Google Scholar 

  68. Schove, D.J.: 1983, Sunspot Cycles, Hutchinson Ross Publishing Company, Stroudsburg.

    Google Scholar 

  69. Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI .

    ADS  Article  Google Scholar 

  70. Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: A mixed-parity dynamo mode? Astron. Astrophys. 288, 293.

    ADS  Google Scholar 

  71. Solanki, S.K., Krilova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311. DOI .

    ADS  Article  Google Scholar 

  72. Soon, W.H., Baliunas, S.L., Zhang, Q.: 1993, An interpretation of cycle periods of stellar chromospheric activity. Astrophys. J. 414, L33. DOI .

    ADS  Article  Google Scholar 

  73. Soon, W., Herrera, V.M., Selvaraj, K., Traversi, R., Usoskin, I., Chen, C.A., Lou, J.Y., Kao, S.L., Carter, R.M., Pipin, V., Seven, M., Becagli, S.: 2014, A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth-Sci. Rev. 134, 1. DOI .

    Article  Google Scholar 

  74. Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI .

    ADS  Article  Google Scholar 

  75. Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI .

    ADS  Article  Google Scholar 

  76. Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Synchronized helicity oscillations: A link between planetary tides and the solar cycle? Solar Phys. 291, 2197. DOI .

    ADS  Article  Google Scholar 

  77. Stefani, F., Galindo, V., Giesecke, A., Weber, N., Weier, T.: 2017, The Tayler instability at low magnetic Prandtl numbers: chiral symmetry breaking and synchronizable helicity oscillations. Magnetohydrodynamics 53, 169.

    Article  Google Scholar 

  78. Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2018, On the synchronizability of Tayler–Spruit and Babcock–Leighton type dynamos. Solar Phys. 293, 12. DOI .

    ADS  Article  Google Scholar 

  79. Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI .

    ADS  Article  Google Scholar 

  80. Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields-I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI .

    ADS  Article  Google Scholar 

  81. Valdés-Galicia, J.F., Velasco, V.M.: 2008, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297. DOI .

    ADS  Article  Google Scholar 

  82. Vaughan, A.H., Preston, G.W.: 1980, A survey of chromospheric Ca II H and K emission in field stars of the solar neighborhood. Publ. Astron. Soc. Pac. 92, 385. DOI .

    ADS  Article  Google Scholar 

  83. Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI .

    ADS  Article  Google Scholar 

  84. Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI .

    ADS  Article  Google Scholar 

  85. Weiss, N.O., Tobias, S.M.: 2016, Supermodulation of the Sun’s magnetic activity: the effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI .

    ADS  Article  Google Scholar 

  86. Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI .

    ADS  Article  Google Scholar 

  87. Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI .

    ADS  Article  Google Scholar 

  88. Wolf, R.: 1859, Extract of a letter to Mr. Carrington. Mon. Not. Roy. Astron. Soc. 19, 85.

    ADS  Article  Google Scholar 

  89. Wolff, C.L., Patrone, P.N.: 2010, A new way that planets can affect the Sun. Solar Phys. 266, 227. DOI .

    ADS  Article  Google Scholar 

  90. Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI .

    ADS  Article  Google Scholar 

  91. Wood, T.: 2010, The solar tachocline: A self-consistent model of magnetic confinement. Dissertation, University of Cambridge, Cambridge.

  92. Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI .

    ADS  MathSciNet  Article  Google Scholar 

  93. Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI .

    ADS  Article  MATH  Google Scholar 

  94. Zaqarashvili, T.: 2018, Equatorial magnetohydrodynamic shallow water waves in the solar tachocline. Astrophys. J. 856, 32. DOI .

    ADS  Article  Google Scholar 

  95. Zhang, H.Q., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H.Q., Sokoloff, D., Kuzanyan, K.: 2010, A new dynamo pattern revealed by solar helical magnetic fields. Mon. Not. Roy. Astron. Soc. 402, L30. DOI .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programm (grant agreement No 787544). The work was also supported in frame of the Helmholtz – RSF Joint Research Group “Magnetohydrodynamic instabilities: Crucial relevance for large scale liquid metal batteries and the sun–climate connection”, contract No HRSF-0044. We would like to thank Norbert Weber for his numerical work on the tidal synchronization of helicity oscillations. Inspiring discussions with Jürg Beer, Antonio Ferriz Mas, Peter Frick, Laurène Jouve, Günther Rüdiger, Dmitry Sokoloff, Rodion Stepanov and Teimuraz Zaqarashvili on various aspects of the solar dynamo are gratefully acknowledged. We thank Willie Soon for pointing out the importance of mid-term fluctuations, and for valuable comments on the Sun–star connection problem. We highly appreciate the constructive criticism of the anonymous reviewer which prompted us to significantly revise the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Stefani.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we validate our numerical model by considering again the model of Jennings and Weiss (1991) which includes a (not very physical) quenching of the \(\Omega \)-effect by the back-reaction of the magnetic field in the specific form

$$\begin{aligned} \omega (\theta ,t) =&\omega _{0} \sin (\theta )/ \bigl(1+q_{\omega } B^{2}( \theta ,t)\bigr), \end{aligned}$$
(9)

while leaving the \(\alpha \)-effect unaffected. Fixing \(\alpha _{0}=-1\) and the quenching parameter \(q_{\omega }=1\), Figure 17 shows the arising spatio-temporal dynamo behavior for two different values \(\omega _{0}=170\) (a), (b), (c) and \(\omega _{0}=250\) (d), (e), (f). The first row (a), (d) shows \(B(\theta ,t)\), the second row shows \(A(\theta ,t)\), and the third row shows \(\omega (\theta ,t)\) (we skip \(\alpha (\theta )= \alpha _{0} \cos (\theta )\) because it is time-independent). Interestingly, depending on the value of \(\omega _{0}\), the system develops a butterfly diagram pointing either away from (a) or towards (d) the equator. In either case, the direction follows basically the isolines of \(\omega \); see (c) and (f), according to a theorem by Yoshimura (1975).

Figure 17
figure17

Spatio-temporal behavior of a simple \(\alpha \)\(\Omega \) model with pure \(\Omega \)-quenching, for two different intensities of the differential rotation, \(\omega _{0}=170\) (a) – (c), and \(\omega _{0}=250\) (d) – (f). The upper two panels (a), (d) show \(B(\theta ,t)\), the central two panels (b), (e) show \(A(\theta ,t)\), the lower two panels (c), (f) show \(\omega (\theta ,t)\). Note the “wrong” butterfly direction for \(\omega _{0}=170\) (a), and the correct direction for \(\omega _{0}=250\) (d). In either case, the toroidal flux (a), (d) is mainly transported along the isolines of \(\omega (\theta ,t)\) (see (c), (f)), according to Yoshimura’s rule.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stefani, F., Giesecke, A. & Weier, T. A Model of a Tidally Synchronized Solar Dynamo. Sol Phys 294, 60 (2019). https://doi.org/10.1007/s11207-019-1447-1

Download citation

Keywords

  • Solar cycle
  • Models helicity
  • Theory