Skip to main content
Log in

A Model of a Tidally Synchronized Solar Dynamo

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We discuss a solar dynamo model of Tayler–Spruit type whose \(\Omega \)-effect is conventionally produced by a solar-like differential rotation but whose \(\alpha \)-effect is assumed to be periodically modulated by planetary tidal forcing. This resonance-like effect has its rationale in the tendency of the current-driven Tayler instability to undergo intrinsic helicity oscillations which, in turn, can be synchronized by periodic tidal perturbations. Specifically, we focus on the 11.07-years alignment periodicity of the tidally dominant planets Venus, Earth, and Jupiter, whose persistent synchronization with the solar dynamo is briefly touched upon. The typically emerging dynamo modes are dipolar fields, oscillating with a 22.14-years period or pulsating with a 11.07-years period, but also quadrupolar fields with corresponding periodicities. In the absence of any constant part of \(\alpha \), we prove the sub-critical nature of this Tayler–Spruit type dynamo. The resulting amplitude of the \(\alpha \) oscillation that is required for dynamo action turns out to lie in the order of \(1~\mbox{m}\,\mbox{s}^{-1}\), which seems not implausible for the Sun. When starting with a more classical, non-periodic part of \(\alpha \), even less of the oscillatory \(\alpha \) part is needed to synchronize the entire dynamo. Typically, the dipole solutions show butterfly diagrams, although their shapes are not convincing yet. Phase coherent transitions between dipoles and quadrupoles, which are reminiscent of the observed behavior during the Maunder minimum, can easily be triggered by long-term variations of dynamo parameters, but may also occur spontaneously even for fixed parameters. Further interesting features of the model are the typical second intensity peak and the intermittent appearance of reversed helicities in both hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI .

    Article  ADS  Google Scholar 

  • Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI .

    Article  ADS  Google Scholar 

  • Bazylevskaya, G.A., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Y.I.: 2016, On the relationship between quasi-biennial variations of solar activity, the heliospheric magnetic field and cosmic rays. Cosm. Res. 54, 171. DOI .

    Article  ADS  Google Scholar 

  • Beer, J., Tobias, S., Weiss, N.: 1998, An active Sun throughout the Maunder minimum. Solar Phys. 181, 237. DOI .

    Article  ADS  Google Scholar 

  • Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration Sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307.

    Google Scholar 

  • Bonanno, A., Guarnieri, F.: 2017, On the possibility of helicity oscillations in the saturation of the Tayler instability. Astron. Nachr. 338, 516. DOI .

    Article  ADS  Google Scholar 

  • Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI .

    Article  ADS  Google Scholar 

  • Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Schüssler, M.: 2014, No evidence for planetary influence on solar activity. Astron. Astrophys. 557, A83. DOI .

    Article  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., Tomczyk, S.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445. DOI .

    Article  ADS  Google Scholar 

  • Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI .

    Article  ADS  Google Scholar 

  • Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI .

    Article  ADS  Google Scholar 

  • Cionco, R.G., Soon, W.: 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the Sun-planets interaction. New Astron. 34, 164. DOI .

    Article  ADS  Google Scholar 

  • Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI .

    Article  ADS  Google Scholar 

  • De Jager, C., Versteegh, G.: 2005, Do planetary motions drive solar variability? Solar Phys. 229, 175. DOI .

    Article  ADS  Google Scholar 

  • Dicke, R.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676.

    Article  ADS  Google Scholar 

  • Dikpati, M., Cally, P.S., McIntosh, S.W., Heifetz, E.: 2017, The origin of the “Seasons” in space weather. Sci. Rep. 7, 14750. DOI .

    Article  ADS  Google Scholar 

  • Eckhardt, B., Faisst, H., Schmiegel, A., Schneider, T.M.: 2008, Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. Roy. Soc. A 366, 1297. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949.

    ADS  Google Scholar 

  • Galindo, V.: 2018, personal communication.

  • Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI .

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI .

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Herault, J.: 2017, Parametric instability in periodically perturbed dynamos. Phys. Rev. Fluids 2, 053701.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. J. 25, 18. DOI .

    Article  Google Scholar 

  • Gough, D.O.: 1990, On possible origins of relatively short-term variations in the solar structure. Phil. Trans. Roy. Soc. London A 330, 627. DOI .

    Article  ADS  Google Scholar 

  • Grandpierre, A.: 1996, On the origin of solar cycle periodicity. Astrophys. Space Sci. 243, 393. DOI .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI .

    Article  ADS  Google Scholar 

  • Hoyng, P.: 1996, Is the solar cycle timed by a clock? Solar Phys. 169, 253.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, New York.

    Google Scholar 

  • Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets, NASA/TM-2007-214817.

  • Jennings, R.L., Weiss, N.O.: 1991, Symmetry breaking in stellar dynamos. Mon. Not. Roy. Astron. Soc. 252, 249. DOI .

    Article  ADS  MATH  Google Scholar 

  • Jones, C.A.: 1983, Model equations for the solar dynamo. In: Soward, A.M. (ed.) Stellar and Planetary Magnetism, Gordon and Breach, New York, 193.

    Google Scholar 

  • Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193. DOI .

    Article  ADS  Google Scholar 

  • Jouve, L., Gastine, T., Lignieres, F.: 2015, Three-dimensional evolution of magnetic fields in a differentially rotating stellar radiative zone. Astron. Astrophys. 575, 21. DOI .

    Article  Google Scholar 

  • Kagan, D., Wheeler, J.C.: 2014, The role of the magnetorotational instability in the Sun. Astrophys. J. 787, A106. DOI .

    Article  Google Scholar 

  • Karak, B.B., Mandal, S., Banarjee, D.: 2018, Double-peaks of the solar cycle: an explanation from a dynamo model. Astrophys. J. 866, 17. DOI .

    Article  ADS  Google Scholar 

  • Kuzanyan, K.M., Sokoloff, D.: 1997, Half-width of a solar dynamo wave in Parker’s migratory dynamo. Solar Phys. 173, 1. DOI .

    Article  ADS  Google Scholar 

  • Mamatsashvili, G., Stefani, F., Hollerbach, R., Rüdiger, G.: 2018, New type of axisymmetric helical magnetorotational instability in rotating flows with positive shear. Phys. Rev. Lett., submitted. arXiv .

  • McCracken, K.G., Beer, J., Steinhilber, F.: 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Solar Phys. 289, 3207. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, S.W.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nature Astron. 11, 0086. DOI .

    Article  Google Scholar 

  • Miyahara, H., Masuda, K., Muraki, Y., Kitagawa, H., Nakamura, T.: 2006, Variation of solar cyclicity during the Spoerer minimum. J. Geophys. Res. 111, A03103. DOI .

    Article  ADS  Google Scholar 

  • Moss, D.L., Sokoloff, D.: 2017, Parity fluctuations in stellar dynamos. Astron. Rep. 61, 878. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2007, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv. Space Res. 40, 1006. DOI .

    Article  ADS  Google Scholar 

  • Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI .

    Article  ADS  Google Scholar 

  • Okhlopkov, V.P.: 2016, The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity. Moscow Univ. Phys. Bull. 71, 440. DOI .

    Article  ADS  Google Scholar 

  • Oláh, K., Kővári, Zs., Petrovay, K., Soon, W., Baliunas, S., Kolláth, Z., Vida, K.: 2016, Magnetic cycles at different ages of stars. Astron. Astrophys. 590, A133. DOI .

    Article  ADS  Google Scholar 

  • Öpik, E.: 1972, Solar-planetary tides and sunspots. I. Astron. J. 10, 298.

    Google Scholar 

  • Palus, M., Kurths, J., Schwarz, U., Novotna, D., Charvatova, I.: 2000, Is the solar activity cycle synchronized with the solar inertial motion? Int. J. Bifurc. Chaos 10, 2519. DOI .

    Article  MATH  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Pipin, V.V., Zhang, H., Sokoloff, D.D., Kuzanyan, K.M., Gao, Y.: 2013, The origin of the helicity hemispheric sign rule reversals in the mean-field solar-type dynamo. Mon. Not. Roy. Astron. Soc. 435, 2581. DOI .

    Article  ADS  Google Scholar 

  • Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI .

    Article  ADS  Google Scholar 

  • Poluianov, S., Usoskin, I.: 2014, Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Solar Phys. 289, 2333. DOI .

    Article  ADS  Google Scholar 

  • Proctor, M.R.E.: 2007, Effects of fluctuations on \(\alpha \Omega \) dynamo models. Mon. Not. Roy. Astron. Soc. 382, L39. DOI .

    Google Scholar 

  • Roald, C.B., Thomas, J.H.: 1997, Simple solar dynamo models with variable \(\alpha \) and \(\omega \) effects. Mon. Not. Roy. Astron. Soc. 288, 551. DOI .

    Google Scholar 

  • Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley, Berlin.

    Book  Google Scholar 

  • Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M., Stefani, F.: 2015a, Stability and instability of hydromagnetic Taylor-Couette flows. Phys. Rep. 741, 1. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015b, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI .

    Article  ADS  Google Scholar 

  • Ruzmaikin, A., Feynman, J.: 2015, The Earth’s climate at minima of centennial Gleissberg cycles. Adv. Space Res. 56, 1590. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2013, Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N., Milani, F., Bianchini, A., Ortolani, S.: 2016, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Sci. Rev. 162, 24. DOI .

    Article  Google Scholar 

  • Schmalz, S., Stix, M.: 1991, An alpha–Omega dynamo with order and chaos. Astron. Astrophys. 245, 654.

    ADS  MATH  Google Scholar 

  • Schove, D.J.: 1955, The sunspot cycle, 649 B.C. to A.D. 2000. J. Geophys. Res. 60, 127.

    Article  ADS  Google Scholar 

  • Schove, D.J.: 1983, Sunspot Cycles, Hutchinson Ross Publishing Company, Stroudsburg.

    Google Scholar 

  • Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI .

    Article  ADS  Google Scholar 

  • Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: A mixed-parity dynamo mode? Astron. Astrophys. 288, 293.

    ADS  Google Scholar 

  • Solanki, S.K., Krilova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311. DOI .

    Article  ADS  Google Scholar 

  • Soon, W.H., Baliunas, S.L., Zhang, Q.: 1993, An interpretation of cycle periods of stellar chromospheric activity. Astrophys. J. 414, L33. DOI .

    Article  ADS  Google Scholar 

  • Soon, W., Herrera, V.M., Selvaraj, K., Traversi, R., Usoskin, I., Chen, C.A., Lou, J.Y., Kao, S.L., Carter, R.M., Pipin, V., Seven, M., Becagli, S.: 2014, A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth-Sci. Rev. 134, 1. DOI .

    Article  Google Scholar 

  • Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Synchronized helicity oscillations: A link between planetary tides and the solar cycle? Solar Phys. 291, 2197. DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Galindo, V., Giesecke, A., Weber, N., Weier, T.: 2017, The Tayler instability at low magnetic Prandtl numbers: chiral symmetry breaking and synchronizable helicity oscillations. Magnetohydrodynamics 53, 169.

    Article  Google Scholar 

  • Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2018, On the synchronizability of Tayler–Spruit and Babcock–Leighton type dynamos. Solar Phys. 293, 12. DOI .

    Article  ADS  Google Scholar 

  • Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI .

    Article  ADS  Google Scholar 

  • Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields-I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI .

    Article  ADS  Google Scholar 

  • Valdés-Galicia, J.F., Velasco, V.M.: 2008, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297. DOI .

    Article  ADS  Google Scholar 

  • Vaughan, A.H., Preston, G.W.: 1980, A survey of chromospheric Ca II H and K emission in field stars of the solar neighborhood. Publ. Astron. Soc. Pac. 92, 385. DOI .

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI .

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI .

    Article  ADS  Google Scholar 

  • Weiss, N.O., Tobias, S.M.: 2016, Supermodulation of the Sun’s magnetic activity: the effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI .

    Article  ADS  Google Scholar 

  • Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI .

    Article  ADS  Google Scholar 

  • Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI .

    Article  ADS  Google Scholar 

  • Wolf, R.: 1859, Extract of a letter to Mr. Carrington. Mon. Not. Roy. Astron. Soc. 19, 85.

    Article  ADS  Google Scholar 

  • Wolff, C.L., Patrone, P.N.: 2010, A new way that planets can affect the Sun. Solar Phys. 266, 227. DOI .

    Article  ADS  Google Scholar 

  • Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI .

    Article  ADS  Google Scholar 

  • Wood, T.: 2010, The solar tachocline: A self-consistent model of magnetic confinement. Dissertation, University of Cambridge, Cambridge.

  • Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI .

    Article  ADS  MATH  Google Scholar 

  • Zaqarashvili, T.: 2018, Equatorial magnetohydrodynamic shallow water waves in the solar tachocline. Astrophys. J. 856, 32. DOI .

    Article  ADS  Google Scholar 

  • Zhang, H.Q., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H.Q., Sokoloff, D., Kuzanyan, K.: 2010, A new dynamo pattern revealed by solar helical magnetic fields. Mon. Not. Roy. Astron. Soc. 402, L30. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programm (grant agreement No 787544). The work was also supported in frame of the Helmholtz – RSF Joint Research Group “Magnetohydrodynamic instabilities: Crucial relevance for large scale liquid metal batteries and the sun–climate connection”, contract No HRSF-0044. We would like to thank Norbert Weber for his numerical work on the tidal synchronization of helicity oscillations. Inspiring discussions with Jürg Beer, Antonio Ferriz Mas, Peter Frick, Laurène Jouve, Günther Rüdiger, Dmitry Sokoloff, Rodion Stepanov and Teimuraz Zaqarashvili on various aspects of the solar dynamo are gratefully acknowledged. We thank Willie Soon for pointing out the importance of mid-term fluctuations, and for valuable comments on the Sun–star connection problem. We highly appreciate the constructive criticism of the anonymous reviewer which prompted us to significantly revise the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stefani.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we validate our numerical model by considering again the model of Jennings and Weiss (1991) which includes a (not very physical) quenching of the \(\Omega \)-effect by the back-reaction of the magnetic field in the specific form

$$\begin{aligned} \omega (\theta ,t) =&\omega _{0} \sin (\theta )/ \bigl(1+q_{\omega } B^{2}( \theta ,t)\bigr), \end{aligned}$$
(9)

while leaving the \(\alpha \)-effect unaffected. Fixing \(\alpha _{0}=-1\) and the quenching parameter \(q_{\omega }=1\), Figure 17 shows the arising spatio-temporal dynamo behavior for two different values \(\omega _{0}=170\) (a), (b), (c) and \(\omega _{0}=250\) (d), (e), (f). The first row (a), (d) shows \(B(\theta ,t)\), the second row shows \(A(\theta ,t)\), and the third row shows \(\omega (\theta ,t)\) (we skip \(\alpha (\theta )= \alpha _{0} \cos (\theta )\) because it is time-independent). Interestingly, depending on the value of \(\omega _{0}\), the system develops a butterfly diagram pointing either away from (a) or towards (d) the equator. In either case, the direction follows basically the isolines of \(\omega \); see (c) and (f), according to a theorem by Yoshimura (1975).

Figure 17
figure 17

Spatio-temporal behavior of a simple \(\alpha \)\(\Omega \) model with pure \(\Omega \)-quenching, for two different intensities of the differential rotation, \(\omega _{0}=170\) (a) – (c), and \(\omega _{0}=250\) (d) – (f). The upper two panels (a), (d) show \(B(\theta ,t)\), the central two panels (b), (e) show \(A(\theta ,t)\), the lower two panels (c), (f) show \(\omega (\theta ,t)\). Note the “wrong” butterfly direction for \(\omega _{0}=170\) (a), and the correct direction for \(\omega _{0}=250\) (d). In either case, the toroidal flux (a), (d) is mainly transported along the isolines of \(\omega (\theta ,t)\) (see (c), (f)), according to Yoshimura’s rule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, F., Giesecke, A. & Weier, T. A Model of a Tidally Synchronized Solar Dynamo. Sol Phys 294, 60 (2019). https://doi.org/10.1007/s11207-019-1447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1447-1

Keywords

Navigation