Solar Physics

, 294:35 | Cite as

Eruptive Instability of the Magnetic-Flux Rope: Gravitational Force and Mass-Unloading

  • Y. T. Tsap
  • B. P. Filippov
  • Y. G. KopylovaEmail author


Based on the Kuperus–Raadu filament model, we analyze the vertical stability of a magnetic-flux rope as a whole, taking into account the gravitational force and mass-unloading. We use the small-perturbation method to determine conditions of the eruptive instability caused by vertical displacements. It has been shown that the upper limit of the magnetic-field decay index describing the flux-rope stability increases with an increase of its mass. The decrease of the flux-rope mass leads to activation and subsequent eruption of the filament. Possible mechanisms of the solar-filament destabilization are discussed.


Sun: magnetic fields Sun: oscillations Sun: photosphere 



We would like to thank the anonymous referees for very useful comments, which we found to be very constructive and helpful to improve our manuscript. Yu. T. Tsap and Yu. G. Kopylova were partially supported by the Russian Foundation for Basic Research (project No. 18-02-00856), and RAS Program of Basic Research 12 “Problems of Origin and Evolution of the Universe”.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. An, J.M., Magara, T.: 2013, Stability and dynamics of a flux rope formed via flux emergence into the solar atmosphere. Astrophys. J. 773, 21. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Aulanier, G.: 2014, The physical mechanisms that initiate and drive solar eruptions. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather, IAU Symp. 300, 184. DOI. ADS. CrossRefGoogle Scholar
  4. Bi, Y., Jiang, Y., Yang, J., Hong, J., Li, H., Yang, D., Yang, B.: 2014, Solar filament material oscillations and drainage before eruption. Astrophys. J. 790, 100. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Bommier, V., Landi Degl’Innocenti, E., Leroy, J.-L., Sahal-Brechot, S.: 1994, Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Solar Phys. 154, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chifor, C., Mason, H.E., Tripathi, D., Isobe, H., Asai, A.: 2006, The early phases of a solar prominence eruption and associated flare: a multi-wavelength analysis. Astron. Astrophys. 458, 965. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Filippov, B.P.: 2007, Eruptive Processes on the Sun, Fizmatlit, Moscow. (In Russian). Google Scholar
  8. Filippov, B.: 2017, Transversal segments in H\(\alpha \) solar filament channels. Mon. Not. Roy. Astron. Soc. 472, 1753. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Filippov, B.P., Den, O.G.: 2000, Prominence height and vertical gradient in magnetic field. Astron. Lett. 26, 322. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Filippov, B., Martsenyuk, O., Srivastava, A.K., Uddin, W.: 2015, Solar magnetic flux ropes. J. Astrophys. Astron. 36, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Forbes, T.G., Isenberg, P.A.: 1991, A catastrophe mechanism for coronal mass ejections. Astrophys. J. 373, 294. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gunár, S., Heinzel, P., Schmieder, B., Schwartz, P., Anzer, U.: 2007, Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astron. Astrophys. 472, 929. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Hirayama, T.: 1972, Ionized helium in prominences and in the chromosphere. Solar Phys. 24, 310. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Isobe, H., Tripathi, D., Asai, A., Jain, R.: 2007, Large-amplitude oscillation of an erupting filament as seen in EUV, H\(\alpha \), and microwave observations. Solar Phys. 246, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Jenkins, J.M., Long, D.M., van Driel-Gesztelyi, L., Carlyle, J.: 2018, Understanding the role of mass-unloading in a filament eruption. Solar Phys. 293, 7. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kadomtsev, B.B.: 1966, Hydromagnetic stability of a plasma. Rev. Plasma Phys. 2, 153. ADS. ADSGoogle Scholar
  17. Kippenhahn, R., Schlüter, A.: 1957, Eine Theorie der solaren Filamente. Z. Astrophys. 43, 36. ADS. ADSzbMATHGoogle Scholar
  18. Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Kolotkov, D.Y., Nisticò, G., Nakariakov, V.M.: 2016, Transverse oscillations and stability of prominences in a magnetic field dip. Astron. Astrophys. 590, A120. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Kolotkov, D.Y., Nisticò, G., Rowlands, G., Nakariakov, V.M.: 2018, Finite amplitude transverse oscillations of a magnetic rope. J. Atmos. Solar-Terr. Phys. 172, 40. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kuperus, M., Raadu, M.A.: 1974, The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189. ADS. ADSGoogle Scholar
  22. Landman, D.A.: 1985, Physical conditions in the cool parts of prominences. III. The Sr(+)/Ba(+) resonance line ratios and the internal Lyman-alpha flux. Astrophys. J. 290, 369. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Longcope, D.W., Forbes, T.G.: 2014, Breakout and tether-cutting eruption models are both catastrophic (sometimes). Solar Phys. 289, 2091. DOI. ADS. ADSCrossRefGoogle Scholar
  24. McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Mei, Z.X., Keppens, R., Roussev, I.I., Lin, J.: 2018, Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere. Astron. Astrophys. 609, A2. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Mikic, Z., Schnack, D.D., van Hoven, G.: 1990, Dynamical evolution of twisted magnetic flux tubes. I – Equilibrium and linear stability. Astrophys. J. 361, 690. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Parenti, S.: 2014, Solar prominences: observations. Living Rev. Solar Phys. 11, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Patsourakos, S., Vial, J.-C.: 2002, Soho contribution to prominence science. Solar Phys. 208, 253. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Priest, E.R.: 1982, Solar Magneto-Hydrodynamics. ADS. CrossRefGoogle Scholar
  31. Priest, E.R., Forbes, T.G.: 1990, Magnetic field evolution during prominence eruptions and two-ribbon flares. Solar Phys. 126, 319. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Schmieder, B., Démoulin, P., Aulanier, G.: 2013, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51, 1967. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Song, H.Q., Chen, Y., Zhang, J., Cheng, X., Fu, H., Li, G.: 2015, Acceleration phases of a solar filament during its eruption. Astrophys. J. Lett. 804, L38. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Sterling, A.C., Moore, R.L.: 2004, Evidence for gradual external reconnection before explosive eruption of a solar filament. Astrophys. J. 602, 1024. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 630, 1148. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Tripathi, D., Isobe, H., Jain, R.: 2009, Large amplitude oscillations in prominences. Space Sci. Rev. 149, 283. DOI. ADS. ADSCrossRefGoogle Scholar
  38. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI. ADS. ADSCrossRefGoogle Scholar
  39. van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Vial, J.-C., Engvold, O. (eds.): 2015, Solar Prominences, Astrophys. Space Sci. Lib. 415. DOI. ADS. CrossRefGoogle Scholar
  41. Xing, C., Li, H.C., Jiang, B., Cheng, X., Ding, M.D.: 2018, Two types of long-duration quasi-static evolution of solar filaments. Astrophys. J. Lett. 857, L14. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Zaitsev, V.V., Stepanov, A.V.: 2018, Prominence activation by increase in electric current. J. Atmos. Solar-Terr. Phys. 179, 149. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Zuccarello, F.P., Aulanier, G., Gilchrist, S.A.: 2015, Critical decay index at the onset of solar eruptions. Astrophys. J. 814, 126. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Crimean Astrophysical Observatory of the Russian Academy of SciencesNauchnyRussia
  2. 2.Pulkovo Observatory of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)TroitskRussia

Personalised recommendations