Skip to main content
Log in

Growth Rates of the Upper-Hybrid Waves for Power-Law and Kappa Distributions with a Loss-Cone Anisotropy

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Fine structures of radio bursts play an important role in the diagnostics of the solar flare plasma. Among them the zebras, which are prevalently assumed to be generated by the double-plasma resonance instability, belong to the most important ones. In this paper we compute the growth rate of this instability for two types of the electron distribution: a) for the power-law distribution and b) for the kappa distribution, in both cases with the loss-cone type anisotropy. We find that the growth rate of the upper-hybrid waves for the power-law momentum distribution strongly depends on the pitch-angle boundary. The maximum growth rate is found for the pitch angle \(\theta_{\mathrm{c}} \approx 50^{\circ}\). For small angles the growth rate profile is very flat and for high pitch angles the wave absorption occurs. Furthermore, analyzing the growth rate of the upper-hybrid waves for the kappa momentum distribution we find that a decrease of the characteristic momentum \(p_{\kappa}\) shifts the maximum of the growth rate to lower values of the ratio of the electron-plasma and electron-cyclotron frequencies, and the frequency widths of the growth rate peaks are very broad. But if we consider the kappa distribution which is isotropic up to some large momentum \(p_{\mathrm{m}}\) and anisotropic with loss-cone above this momentum then distinct peaks of the growth rate appear and thus distinct zebra stripes can be generated. It means that the restriction of small momenta for the anisotropic part of distributions is of principal importance for the zebra stripe generation. Finally, for the zebra stripes observed on 1 August 2010, the growth rates in dependence on the radio frequency are computed. It is shown that in this case the growth rate peaks are more distinct than in usually presented dependencies of growth rates on the ratio of the plasma and cyclotron frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Bárta, M., Karlický, M.: 2006, Interference patterns in solar radio spectra: high-resolution structural analysis of the corona. Astron. Astrophys. 450, 359. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benáček, J., Karlický, M.: 2018, Double plasma resonance instability as a source of solar zebra emission. Astron. Astrophys. 611, A60. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benáček, J., Karlický, M., Yasnov, L.: 2017, Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns. Astron. Astrophys. 598, A106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bian, N.H., Emslie, A.G., Stackhouse, D.J., Kontar, E.P.: 2014, The formation of Kappa-distribution accelerated electron populations in solar flares. Astrophys. J. 796, 142. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 1976, Microstructure in the continuous radiation of type IV meter bursts. Observations and model of the source. Soviet Astron. 20, 449. ADS .

    ADS  Google Scholar 

  • Chernov, G.P.: 1990, Whistlers in the solar corona and their relevance to fine structures of type IV radio emission. Solar Phys. 130, 75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2010, Recent results of zebra patterns in solar radio bursts. Res. Astron. Astrophys. 10, 821. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chernov, G.P., Yan, Y.-H., Fu, Q.-J.: 2014, The importance of source positions during radio fine structure observations. Res. Astron. Astrophys. 14, 831. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chernov, G.P., Sych, R.A., Meshalkina, N.S., Yan, Y., Tan, C.: 2012, Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003. Astron. Astrophys. 538, A53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dory, R.A., Guest, G.E., Harris, E.G.: 1965, Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: 2003, Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karlický, M.: 2013, Radio continua modulated by waves: zebra patterns in solar and pulsar radio spectra? Astron. Astrophys. 552, A90. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kašparová, J., Karlický, M.: 2009, Kappa distribution and hard X-ray emission of solar flares. Astron. Astrophys. 497, L13. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Kontar, E.P., Dickson, E., Kašparová, J.: 2008, Low-energy cutoffs in electron spectra of solar flares: statistical survey. Solar Phys. 252, 139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuijpers, J.: 1974, A coherent radiation mechanism for type IV DM radio bursts. Solar Phys. 36, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuijpers, J.: 1975, A unified explanation of solar type IV DM continua and ZEBRA patterns. Astron. Astrophys. 40, 405. ADS .

    ADS  Google Scholar 

  • Kuznetsov, A.A., Tsap, Y.T.: 2007, Loss-cone instability and formation of zebra patterns in type IV solar radio bursts. Solar Phys. 241, 127. DOI . ADS .

    Article  ADS  Google Scholar 

  • LaBelle, J., Treumann, R.A., Yoon, P.H., Karlický, M.: 2003, A model of zebra emission in solar type IV radio bursts. Astrophys. J. 593, 1195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Laptukhov, A.I., Chernov, G.P.: 2009, Concerning mechanisms for the zebra pattern formation in the solar radio emission. Plasma Phys. Rep. 35, 160. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ledenev, V.G., Yan, Y., Fu, Q.: 2006, Interference mechanism of “zebra-pattern” formation in solar radio emission. Solar Phys. 233, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Oka, M., Ishikawa, S., Saint-Hilaire, P., Krucker, S., Lin, R.P.: 2013, Kappa distribution model for hard X-ray coronal sources of solar flares. Astrophys. J. 764, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Oka, M., Krucker, S., Hudson, H.S., Saint-Hilaire, P.: 2015, Electron energy partition in the above-the-looptop solar hard X-ray sources. Astrophys. J. 799, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rosenberg, H., Tarnstrom, G.: 1972, Frequency separation in structure of solar continuum radio bursts. Solar Phys. 24, 210. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saint-Hilaire, P., Benz, A.O.: 2005, Thermal and non-thermal energies of solar flares. Astron. Astrophys. 435, 743. DOI . ADS .

    Article  ADS  Google Scholar 

  • Slottje, C.: 1972, Peculiar absorption and emission microstructures in the type IV solar radio outburst of March 2, 1970. Solar Phys. 25, 210. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stepanov, A.V.: 1974, A mechanism for generating type IV solar radio bursts. Soviet Astron. 17, 781. ADS .

    ADS  Google Scholar 

  • Tan, B.: 2010, A physical explanation of solar microwave zebra pattern with the current-carrying plasma loop model. Astrophys. Space Sci. 325, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tan, B., Yan, Y., Tan, C., Sych, R., Gao, G.: 2012, Microwave zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys. J. 744, 166. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tan, B., Tan, C., Zhang, Y., Mészárosová, H., Karlický, M.: 2014, Statistics and classification of the microwave zebra patterns associated with solar flares. Astrophys. J. 780, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • White, S.M., Melrose, D.B., Dulk, G.A.: 1983, Electron cyclotron masers during solar flares. Proc. Astron. Soc. Aust. 5, 188. ADS .

    Article  ADS  Google Scholar 

  • Winglee, R.M., Dulk, G.A.: 1986, The electron-cyclotron maser instability as a source of plasma radiation. Astrophys. J. 307, 808. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Benáček, J., Karlický, M.: 2017, Brightness temperature of radio zebras and wave energy densities in their sources. Solar Phys. 292, 163. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M.: 2004, The growth rate of upper-hybrid waves and dynamics of microwave zebra structures. Solar Phys. 219, 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M., Stupishin, A.G.: 2016, Physical conditions in the source region of a zebra structure. Solar Phys. 291, 2037. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra-pattern. Solar Phys. 44, 461. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y., Zaitsev, V.V., Shaposhnikov, V.E.: 2016, Double plasma resonance and its manifestations in radio astronomy. Phys. Usp. 59, 997. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for valuable comments. M. Karlický acknowledges support from Grants 17-16447S and 18-09072S of the Grant Agency of the Czech Republic. L.V. Yasnov acknowledge support from Grant 18-29-21016-mk and partly from Grant 18-02-00045 of the Russian Foundation for Basic Research. This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center LM2015070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Benáček.

Ethics declarations

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Benáček, J. & Karlický, M. Growth Rates of the Upper-Hybrid Waves for Power-Law and Kappa Distributions with a Loss-Cone Anisotropy. Sol Phys 294, 29 (2019). https://doi.org/10.1007/s11207-019-1415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1415-9

Keywords

Navigation