Skip to main content
Log in

Neural Network Forecast of the Sunspot Butterfly Diagram

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using neural networks as a prediction method, we attempt to demonstrate that forecasting of the Sun’s sunspot time series can be extended to the spatio-temporal case. We employ this machine-learning method to forecast not only in time but also in space (in this case, latitude) on a spatio-temporal dataset representing the solar sunspot diagram extending to a total of 142 years. The analysis shows that this approach seems to be able to reconstruct the overall qualitative aspects of the spatial-temporal series, namely the overall shape and amplitude of the latitude and time pattern of sunspots. This is, as far as we are aware, the first time that neural networks have been used to forecast the Sun’s sunspot butterfly diagram, and although the results are limited in the quantitative prediction aspects, it points to the way to use the full spatio-temporal series as opposed to just the time series for machine-learning approaches to forecasting. Additionally, we use the method to predict that the upcoming Cycle 25 maximum sunspot number will be around \(R_{25}=57 \pm17\). This implies a very weak cycle and, in fact, the weakest cycle on record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. From a quick survey of 22 articles in the literature, we calculated an average of \(R_{25}=106.03 \pm34.77\) in terms of forecasts of the maximum for Cycle 25.

References

  • Abarbanel, H.D.I., Gollub, J.P.: 1996, Analysis of observed chaotic data. Phys. Today 49, 86. DOI . ADS .

    Article  Google Scholar 

  • Acero, F.J., Carrasco, V.M.S., Gallego, M.C., García, J.A., Vaquero, J.M.: 2017, Extreme value theory and the new sunspot number series. Astrophys. J. 839, 98. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arlt, R., Weiss, N.: 2014, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186, 525. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ashwin, P., Covas, E., Tavakol, R.: 1999, Transverse instability for non-normal parameters. Nonlinearity 12, 563. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the Maunder Minimum. Solar Phys. 181, 237. DOI . ADS .

    Article  ADS  Google Scholar 

  • Broomhall, A.-M., Nakariakov, V.M.: 2015, A comparison between global proxies of the Sun’s magnetic activity cycle: inferences from helioseismology. Solar Phys. 290, 3095. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M.: 2016, Solar cycle 25: another moderate cycle? Astrophys. J. Lett. 823, L22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Zhang, M.: 2012, Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86, 116. DOI .

    Article  Google Scholar 

  • Cheng, T., Wang, J., Haworth, J., Heydecker, B., Chow, A.: 2014, A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 46(1), 75. DOI .

    Article  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291(9-10), 2629. DOI .

    Article  ADS  Google Scholar 

  • Covas, E.: 2017, Spatial-temporal forecasting the sunspot diagram. Astron. Astrophys. 605, A44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Covas, E.O., Mena, F.C.: 2011, Forecasting of yield curves using local state space reconstruction. In: Dynamics, Games and Science I, Springer Berlin/Heidelberg, 243. DOI .

    Chapter  Google Scholar 

  • Cun, Y.L., Denker, J.S., Solla, S.A.: 1990, Optimal brain damage. In: Toureztky, D.S. (ed.), Advances in Neural Information Processing Systems 2, 598. ISBN 1-55-860100-7.

    Google Scholar 

  • Elman, J.L.: 1990, Finding structure in time. Cogn. Sci. 14(2), 179. DOI .

    Article  Google Scholar 

  • Frank, R.J., Davey, N., Hunt, S.P.: 2001, Time series prediction and neural networks. J. Intell. Robot. Syst. 31(1), 91. DOI .

    Article  MATH  Google Scholar 

  • Fraser, A.M., Swinney, H.L.: 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hale, G.E.: 1908, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Han, M., Xi, J., Xu, S., Yin, F.-L.: 2004, Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network pruning. In: IEEE International Conference on Neural Networks, IEEE, 2002. DOI .

  • Hathaway, D.H.: 2015a, Sunspot area butterfly diagram data. Original data in http://solarscience.msfc.nasa.gov/greenwch.shtml and more up-to-date data in http://solarcyclescience.com/activeregions.html .

  • Hathaway, D.H.: 2015b, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. 121(11), 10,744. DOI .

    Article  Google Scholar 

  • Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ilonidis, S., Zhao, J., Hartlep, T.: 2013, Helioseismic investigation of emerging magnetic flux in the solar convection zone. Astrophys. J. 777, 138. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ivanov, V.G., Miletsky, E.V.: 2011, Width of sunspot generating zone and reconstruction of butterfly. Solar Phys. 268, 231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cao, J.: 2018, Predicting solar surface large-scale magnetic field of cycle 24. J. Atmos. Solar-Terr. Phys. 176, 34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schmitt, D., Schüssler, M.: 2011, The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys. 528, A82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kennel, M.B., Brown, R., Abarbanel, H.D.I.: 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kim, H.S., Eykholt, R., Salas, J.D.: 1999, Nonlinear dynamics, delay times, and embedding windows. Physica D 127, 48. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2017, ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84. DOI .

    Article  Google Scholar 

  • Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: 1998, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278. DOI .

    Article  Google Scholar 

  • Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M., Barnard, L., Davis, C., Thomas, S.: 2012, Solar cycle 24: what is the sun up to? Astron. Geophys. 53(3), 3.09. DOI .

    Article  Google Scholar 

  • Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: 2017, Reservoir observers: model-free inference of unmeasured variables in chaotic systems. Chaos 27(4), 041102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luk, K.C., Ball, J.E., Sharma, A.: 2000, A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227(1-4), 56. DOI .

    Article  ADS  Google Scholar 

  • Luthardt, L., Rößler, R.: 2017, Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mayaud, P.-N.: 1972, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77, 6870. DOI . ADS .

    Article  ADS  Google Scholar 

  • McDermott, P.L., Wikle, C.K.: 2017, An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Statistics 6(1), 315. DOI .

    Article  MathSciNet  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mundt, M.D., Maguire, W.B. II, Chase, R.R.P.: 1991, Chaos in the sunspot cycle – analysis and prediction. J. Geophys. Res. 96, 1705. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Balmaceda, L.A., DeLuca, E.E.: 2013, Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys. Rev. Lett. 111(4), 041106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nevanlinna, H., Kataja, E.: 1993, An extension of the geomagnetic activity index series aa for two solar cycles (1844 – 1868). Geophys. Res. Lett. 20, 2703. DOI . ADS .

    Article  ADS  Google Scholar 

  • Oh, K.: 2002, Analyzing stock market tick data using piecewise nonlinear model. Expert Syst. Appl. 22(3), 249. DOI .

    Article  Google Scholar 

  • Owens, B.: 2013, Long-term research: slow science. Nature 495, 300. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parlitz, U., Merkwirth, C.: 2000, Prediction of spatiotemporal time series based on reconstructed local states. Phys. Rev. Lett. 84, 1890. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: 2017, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27(12), 121102. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: 2018a, Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102. DOI .

    Article  ADS  Google Scholar 

  • Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B.R., Girvan, M., Ott, E.: 2018b, Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos 28(4), 041101. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252(1), 209. DOI .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2016, Predictions of solar cycle 24: how are we doing? Space Weather 14(1), 10. DOI .

    Article  ADS  Google Scholar 

  • Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: 2000, Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1-4), 201. DOI .

    Article  Google Scholar 

  • Raissi, M.: 2018, Deep hidden physics models: deep learning of nonlinear partial differential equations. ArXiv e-prints. ADS .

  • Raissi, M., Karniadakis, G.E.: 2018, Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017a, Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations. ArXiv e-prints. ADS .

  • Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017b, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations. ArXiv e-prints. ADS .

  • Reed, R., Marks II, R.J.: 1999, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, A Bradford Book, Mit Press, Massachusetts. ISBN 0-26-252701-4.

    Book  Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: 1986, Learning representations by back-propagating errors. Nature 323, 533. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Rumelhart, D.E., McClelland, J.L., Group, P.R.: 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (Volume 1), A Bradford Book, Massachusetts. ISBN 0-26-218120-7.

    Google Scholar 

  • Santos, A.R.G., Cunha, M.S., Avelino, P.P., Campante, T.L.: 2015, Spot cycle reconstruction: an empirical tool. Application to the sunspot cycle. Astron. Astrophys. 580, A62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheng, Z., Hong-Xing, L., Dun-Tang, G., Si-Dan, D.: 2003, Determining the input dimension of a neural network for nonlinear time series prediction. Chin. Phys. 12(6), 594. DOI .

    Article  ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spiegel, E.A.: 2009, Chaos and intermittency in the solar cycle. Space Sci. Rev. 144, 25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stathakis, D.: 2009, How many hidden layers and nodes? Int. J. Remote Sens. 30(8), 2133. DOI .

    Article  ADS  Google Scholar 

  • Sunspot Index and Long-Term Solar Observations (SILSO) World Data Center, The international sunspot number, 13-month smoothed monthly sunspot number in http://sidc.be/silso/DATA/SN_ms_tot_V2.0.txt . International sunspot number monthly bulletin and online catalogue. ADS .

  • Upton, L.A., Hathaway, D.H.: 2018, An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45(16), 8091. DOI .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Mursula, K., Arlt, R., Kovaltsov, G.A.: 2009, A solar cycle lost in 1793-1800: early sunspot observations resolve the old mystery. Astrophys. J. Lett. 700, L154. DOI . ADS .

    Article  ADS  Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: 1990, Phoneme recognition using time-delay neural networks. In: Readings in Speech Recognition, Elsevier, Amsterdam, 393. DOI .

    Chapter  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. Lett. 694, L11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600. DOI .

    Article  ADS  Google Scholar 

  • Weiss, N.O.: 1988, Is the solar cycle an example of deterministic chaos? In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 69. ADS .

    Chapter  Google Scholar 

  • Weiss, N.O.: 1990, Periodicity and aperiodicity in solar magnetic activity. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 330, 617. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilson, R.M., Hathaway, D.H.: 2006, On the relation between sunspot area and sunspot number. NASA STI/Recon Technical Report N 6. ADS .

  • Wilson, D.R., Martinez, T.R.: 2003, The general inefficiency of batch training for gradient descent learning. Neural Netw. 16(10), 1429. DOI .

    Article  Google Scholar 

  • Zhang, Y.: 2009, Recurrent Neural Networks: Design, Analysis, Applications to Control and Robotic Systems, LAP Lambert Academic Publishing, Riga. ISBN 3-83-830382-2.

    Google Scholar 

  • Zhang, J.-S., Xiao, X.-C.: 2000, Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Reza Tavakol for very useful conversations regarding forecasting sunspots. We also would like to thank David Hathaway for publishing the data that we used in this article. Finally, we would also like to thank the anonymous referee, whose comments have helped us to improve this article. N. Peixinho acknowledges funding from the Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BGCT/113686/2015). CITEUC is funded by National Funds through FCT – Foundation for Science and Technology (project: UID/Multi/00611/2013) and FEDER – European Regional Development Fund through COMPETE 2020 – Operational Programme Competitiveness and Internationalisation (project: POCI-01-0145-FEDER-006922). J. Fernandes acknowledges funding from the POCH and Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BSAB/143060/2018) and visiting facilities at Niels Bohr Institute (University of Copenhagen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eurico Covas.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covas, E., Peixinho, N. & Fernandes, J. Neural Network Forecast of the Sunspot Butterfly Diagram. Sol Phys 294, 24 (2019). https://doi.org/10.1007/s11207-019-1412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1412-z

Keywords

Navigation