Neural Network Forecast of the Sunspot Butterfly Diagram

Abstract

Using neural networks as a prediction method, we attempt to demonstrate that forecasting of the Sun’s sunspot time series can be extended to the spatio-temporal case. We employ this machine-learning method to forecast not only in time but also in space (in this case, latitude) on a spatio-temporal dataset representing the solar sunspot diagram extending to a total of 142 years. The analysis shows that this approach seems to be able to reconstruct the overall qualitative aspects of the spatial-temporal series, namely the overall shape and amplitude of the latitude and time pattern of sunspots. This is, as far as we are aware, the first time that neural networks have been used to forecast the Sun’s sunspot butterfly diagram, and although the results are limited in the quantitative prediction aspects, it points to the way to use the full spatio-temporal series as opposed to just the time series for machine-learning approaches to forecasting. Additionally, we use the method to predict that the upcoming Cycle 25 maximum sunspot number will be around \(R_{25}=57 \pm17\). This implies a very weak cycle and, in fact, the weakest cycle on record.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Notes

  1. 1.

    From a quick survey of 22 articles in the literature, we calculated an average of \(R_{25}=106.03 \pm34.77\) in terms of forecasts of the maximum for Cycle 25.

References

  1. Abarbanel, H.D.I., Gollub, J.P.: 1996, Analysis of observed chaotic data. Phys. Today 49, 86. DOI . ADS .

    Article  Google Scholar 

  2. Acero, F.J., Carrasco, V.M.S., Gallego, M.C., García, J.A., Vaquero, J.M.: 2017, Extreme value theory and the new sunspot number series. Astrophys. J. 839, 98. DOI . ADS .

    ADS  Article  Google Scholar 

  3. Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI . ADS .

    ADS  Article  Google Scholar 

  4. Arlt, R., Weiss, N.: 2014, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186, 525. DOI . ADS .

    ADS  Article  Google Scholar 

  5. Ashwin, P., Covas, E., Tavakol, R.: 1999, Transverse instability for non-normal parameters. Nonlinearity 12, 563. DOI . ADS .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the Maunder Minimum. Solar Phys. 181, 237. DOI . ADS .

    ADS  Article  Google Scholar 

  7. Broomhall, A.-M., Nakariakov, V.M.: 2015, A comparison between global proxies of the Sun’s magnetic activity cycle: inferences from helioseismology. Solar Phys. 290, 3095. DOI . ADS .

    ADS  Article  Google Scholar 

  8. Cameron, R.H., Jiang, J., Schüssler, M.: 2016, Solar cycle 25: another moderate cycle? Astrophys. J. Lett. 823, L22. DOI . ADS .

    ADS  Article  Google Scholar 

  9. Chandra, R., Zhang, M.: 2012, Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86, 116. DOI .

    Article  Google Scholar 

  10. Cheng, T., Wang, J., Haworth, J., Heydecker, B., Chow, A.: 2014, A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 46(1), 75. DOI .

    Article  Google Scholar 

  11. Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291(9-10), 2629. DOI .

    ADS  Article  Google Scholar 

  12. Covas, E.: 2017, Spatial-temporal forecasting the sunspot diagram. Astron. Astrophys. 605, A44. DOI . ADS .

    ADS  Article  Google Scholar 

  13. Covas, E.O., Mena, F.C.: 2011, Forecasting of yield curves using local state space reconstruction. In: Dynamics, Games and Science I, Springer Berlin/Heidelberg, 243. DOI .

    Google Scholar 

  14. Cun, Y.L., Denker, J.S., Solla, S.A.: 1990, Optimal brain damage. In: Toureztky, D.S. (ed.), Advances in Neural Information Processing Systems 2, 598. ISBN 1-55-860100-7.

    Google Scholar 

  15. Elman, J.L.: 1990, Finding structure in time. Cogn. Sci. 14(2), 179. DOI .

    Article  Google Scholar 

  16. Frank, R.J., Davey, N., Hunt, S.P.: 2001, Time series prediction and neural networks. J. Intell. Robot. Syst. 31(1), 91. DOI .

    Article  MATH  Google Scholar 

  17. Fraser, A.M., Swinney, H.L.: 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134. DOI .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. Hale, G.E.: 1908, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315. DOI . ADS .

    ADS  Article  Google Scholar 

  19. Han, M., Xi, J., Xu, S., Yin, F.-L.: 2004, Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409. DOI .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network pruning. In: IEEE International Conference on Neural Networks, IEEE, 2002. DOI .

  21. Hathaway, D.H.: 2015a, Sunspot area butterfly diagram data. Original data in http://solarscience.msfc.nasa.gov/greenwch.shtml and more up-to-date data in http://solarcyclescience.com/activeregions.html .

  22. Hathaway, D.H.: 2015b, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI . ADS .

    ADS  Article  Google Scholar 

  23. Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. 121(11), 10,744. DOI .

    Article  Google Scholar 

  24. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665. DOI . ADS .

    ADS  Article  Google Scholar 

  25. Ilonidis, S., Zhao, J., Hartlep, T.: 2013, Helioseismic investigation of emerging magnetic flux in the solar convection zone. Astrophys. J. 777, 138. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Ivanov, V.G., Miletsky, E.V.: 2011, Width of sunspot generating zone and reconstruction of butterfly. Solar Phys. 268, 231. DOI . ADS .

    ADS  Article  Google Scholar 

  27. Jiang, J., Cao, J.: 2018, Predicting solar surface large-scale magnetic field of cycle 24. J. Atmos. Solar-Terr. Phys. 176, 34. DOI . ADS .

    ADS  Article  Google Scholar 

  28. Jiang, J., Cameron, R.H., Schmitt, D., Schüssler, M.: 2011, The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys. 528, A82. DOI . ADS .

    ADS  Article  Google Scholar 

  29. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403. DOI . ADS .

    ADS  Article  Google Scholar 

  30. Kim, H.S., Eykholt, R., Salas, J.D.: 1999, Nonlinear dynamics, delay times, and embedding windows. Physica D 127, 48. DOI . ADS .

    ADS  Article  MATH  Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2017, ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84. DOI .

    Article  Google Scholar 

  32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: 1998, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278. DOI .

    Article  Google Scholar 

  33. Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379. DOI . ADS .

    ADS  Article  Google Scholar 

  34. Lockwood, M., Owens, M., Barnard, L., Davis, C., Thomas, S.: 2012, Solar cycle 24: what is the sun up to? Astron. Geophys. 53(3), 3.09. DOI .

    Article  Google Scholar 

  35. Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: 2017, Reservoir observers: model-free inference of unmeasured variables in chaotic systems. Chaos 27(4), 041102. DOI . ADS .

    ADS  Article  Google Scholar 

  36. Luk, K.C., Ball, J.E., Sharma, A.: 2000, A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227(1-4), 56. DOI .

    ADS  Article  Google Scholar 

  37. Luthardt, L., Rößler, R.: 2017, Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279. DOI . ADS .

    ADS  Article  Google Scholar 

  38. Mayaud, P.-N.: 1972, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77, 6870. DOI . ADS .

    ADS  Article  Google Scholar 

  39. McDermott, P.L., Wikle, C.K.: 2017, An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Statistics 6(1), 315. DOI .

    MathSciNet  Article  Google Scholar 

  40. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI . ADS .

    ADS  Article  Google Scholar 

  41. McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI . ADS .

    ADS  Article  Google Scholar 

  42. Mundt, M.D., Maguire, W.B. II, Chase, R.R.P.: 1991, Chaos in the sunspot cycle – analysis and prediction. J. Geophys. Res. 96, 1705. DOI . ADS .

    ADS  Article  Google Scholar 

  43. Muñoz-Jaramillo, A., Balmaceda, L.A., DeLuca, E.E.: 2013, Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys. Rev. Lett. 111(4), 041106. DOI . ADS .

    ADS  Article  Google Scholar 

  44. Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI . ADS .

    ADS  Article  Google Scholar 

  45. Nevanlinna, H., Kataja, E.: 1993, An extension of the geomagnetic activity index series aa for two solar cycles (1844 – 1868). Geophys. Res. Lett. 20, 2703. DOI . ADS .

    ADS  Article  Google Scholar 

  46. Oh, K.: 2002, Analyzing stock market tick data using piecewise nonlinear model. Expert Syst. Appl. 22(3), 249. DOI .

    Article  Google Scholar 

  47. Owens, B.: 2013, Long-term research: slow science. Nature 495, 300. DOI . ADS .

    ADS  Article  Google Scholar 

  48. Parlitz, U., Merkwirth, C.: 2000, Prediction of spatiotemporal time series based on reconstructed local states. Phys. Rev. Lett. 84, 1890. DOI . ADS .

    ADS  Article  Google Scholar 

  49. Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: 2017, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27(12), 121102. DOI . ADS .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: 2018a, Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102. DOI .

    ADS  Article  Google Scholar 

  51. Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B.R., Girvan, M., Ott, E.: 2018b, Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos 28(4), 041101. DOI . ADS .

    ADS  MathSciNet  Article  Google Scholar 

  52. Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252(1), 209. DOI .

    ADS  Article  Google Scholar 

  53. Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI . ADS .

    ADS  Article  Google Scholar 

  54. Pesnell, W.D.: 2016, Predictions of solar cycle 24: how are we doing? Space Weather 14(1), 10. DOI .

    ADS  Article  Google Scholar 

  55. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: 2000, Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1-4), 201. DOI .

    Article  Google Scholar 

  56. Raissi, M.: 2018, Deep hidden physics models: deep learning of nonlinear partial differential equations. ArXiv e-prints. ADS .

  57. Raissi, M., Karniadakis, G.E.: 2018, Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125. DOI . ADS .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017a, Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations. ArXiv e-prints. ADS .

  59. Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017b, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations. ArXiv e-prints. ADS .

  60. Reed, R., Marks II, R.J.: 1999, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, A Bradford Book, Mit Press, Massachusetts. ISBN 0-26-252701-4.

    Google Scholar 

  61. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: 1986, Learning representations by back-propagating errors. Nature 323, 533. DOI . ADS .

    ADS  Article  MATH  Google Scholar 

  62. Rumelhart, D.E., McClelland, J.L., Group, P.R.: 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (Volume 1), A Bradford Book, Massachusetts. ISBN 0-26-218120-7.

    Google Scholar 

  63. Santos, A.R.G., Cunha, M.S., Avelino, P.P., Campante, T.L.: 2015, Spot cycle reconstruction: an empirical tool. Application to the sunspot cycle. Astron. Astrophys. 580, A62. DOI . ADS .

    ADS  Article  Google Scholar 

  64. Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233. DOI . ADS .

    ADS  Article  Google Scholar 

  65. Sheng, Z., Hong-Xing, L., Dun-Tang, G., Si-Dan, D.: 2003, Determining the input dimension of a neural network for nonlinear time series prediction. Chin. Phys. 12(6), 594. DOI .

    ADS  Article  Google Scholar 

  66. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI . ADS .

    ADS  Article  Google Scholar 

  67. Spiegel, E.A.: 2009, Chaos and intermittency in the solar cycle. Space Sci. Rev. 144, 25. DOI . ADS .

    ADS  Article  Google Scholar 

  68. Stathakis, D.: 2009, How many hidden layers and nodes? Int. J. Remote Sens. 30(8), 2133. DOI .

    ADS  Article  Google Scholar 

  69. Sunspot Index and Long-Term Solar Observations (SILSO) World Data Center, The international sunspot number, 13-month smoothed monthly sunspot number in http://sidc.be/silso/DATA/SN_ms_tot_V2.0.txt . International sunspot number monthly bulletin and online catalogue. ADS .

  70. Upton, L.A., Hathaway, D.H.: 2018, An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45(16), 8091. DOI .

    ADS  Article  Google Scholar 

  71. Usoskin, I.G., Mursula, K., Arlt, R., Kovaltsov, G.A.: 2009, A solar cycle lost in 1793-1800: early sunspot observations resolve the old mystery. Astrophys. J. Lett. 700, L154. DOI . ADS .

    ADS  Article  Google Scholar 

  72. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: 1990, Phoneme recognition using time-delay neural networks. In: Readings in Speech Recognition, Elsevier, Amsterdam, 393. DOI .

    Google Scholar 

  73. Wang, Y.-M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. Lett. 694, L11. DOI . ADS .

    ADS  Article  Google Scholar 

  74. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600. DOI .

    ADS  Article  Google Scholar 

  75. Weiss, N.O.: 1988, Is the solar cycle an example of deterministic chaos? In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 69. ADS .

    Google Scholar 

  76. Weiss, N.O.: 1990, Periodicity and aperiodicity in solar magnetic activity. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 330, 617. DOI . ADS .

    ADS  Article  Google Scholar 

  77. Wilson, R.M., Hathaway, D.H.: 2006, On the relation between sunspot area and sunspot number. NASA STI/Recon Technical Report N 6. ADS .

  78. Wilson, D.R., Martinez, T.R.: 2003, The general inefficiency of batch training for gradient descent learning. Neural Netw. 16(10), 1429. DOI .

    Article  Google Scholar 

  79. Zhang, Y.: 2009, Recurrent Neural Networks: Design, Analysis, Applications to Control and Robotic Systems, LAP Lambert Academic Publishing, Riga. ISBN 3-83-830382-2.

    Google Scholar 

  80. Zhang, J.-S., Xiao, X.-C.: 2000, Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88. DOI .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Reza Tavakol for very useful conversations regarding forecasting sunspots. We also would like to thank David Hathaway for publishing the data that we used in this article. Finally, we would also like to thank the anonymous referee, whose comments have helped us to improve this article. N. Peixinho acknowledges funding from the Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BGCT/113686/2015). CITEUC is funded by National Funds through FCT – Foundation for Science and Technology (project: UID/Multi/00611/2013) and FEDER – European Regional Development Fund through COMPETE 2020 – Operational Programme Competitiveness and Internationalisation (project: POCI-01-0145-FEDER-006922). J. Fernandes acknowledges funding from the POCH and Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BSAB/143060/2018) and visiting facilities at Niels Bohr Institute (University of Copenhagen).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eurico Covas.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Covas, E., Peixinho, N. & Fernandes, J. Neural Network Forecast of the Sunspot Butterfly Diagram. Sol Phys 294, 24 (2019). https://doi.org/10.1007/s11207-019-1412-z

Download citation

Keywords

  • Sunspots
  • Statistics
  • Solar cycle
  • Observations