Skip to main content

Evolution of the Sun’s Polar Fields and the Poleward Transport of Remnant Magnetic Flux

Abstract

Synoptic magnetograms and relevant proxy data were analyzed to study the evolution of the Sun’s polar magnetic fields. The time-latitude analysis of large-scale magnetic fields demonstrates cyclic changes in their zonal structure and the polar field buildup. The time-latitude distributions of the emergent and remnant magnetic flux enable us to examine individual features of recent cycles. The poleward transport of predominantly following polarities contributed much of the polar flux and led to polar field reversals. Multiple reversals of dominant polarities at the Sun’s poles were identified in Cycles 20 and 21. Triple reversals were caused by remnant flux surges of following and leading polarities. The time-latitude analysis of solar magnetic fields in Cycles 20 – 24 revealed zones that are characterized by a predominance of negative (non-Joy) tilts and by the appearance of active regions that violate Hale’s polarity law. The decay of non-Joy and anti-Hale active regions results in remnant flux surges that disturb the usual order in magnetic flux transport and sometimes lead to multiple reversals of polar fields. The analysis of local and large-scale magnetic fields and their causal relation improved our understanding of the Sun’s polar field weakening.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572.

    ADS  Google Scholar 

  • Baranyi, T.: 2015, Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy’s law. Mon. Not. Roy. Astron. Soc. 447, 1857.

    ADS  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.K.: 2004, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys. 426, 1075.

    ADS  Google Scholar 

  • Cameron, R.H., Duvall, T.L., Schüssler, M., Schunker, H.: 2018, Observing and modeling the poloidal and toroidal fields of the solar dynamo. Astron. Astrophys. 609, A56.

    ADS  Google Scholar 

  • Choudhuri, A.R., Karak, B.B.: 2012, Origin of grand minima in sunspot cycles. Phys. Rev. Lett. 109(17), 171103.

    ADS  Google Scholar 

  • Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29.

    ADS  Google Scholar 

  • Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2010, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7.

    ADS  Google Scholar 

  • Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2013, Sunspot group tilt angles and the strength of the solar cycle (Corrigendum). Astron. Astrophys. 556, C3.

    ADS  Google Scholar 

  • DeVore, C.R., Sheeley, N.R. Jr., Boris, J.P., Young, T.R. Jr., Harvey, K.L.: 1985, Simulations of magnetic-flux transport in solar active regions. Solar Phys. 102, 41.

    ADS  Google Scholar 

  • Durney, B.R.: 1995, On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys. 160, 213.

    ADS  Google Scholar 

  • Duvall, T.L. Jr., Wilcox, J.M., Svalgaard, L., Scherrer, P.H., McIntosh, P.S.: 1977, Comparison of H alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford. NASA STI/Recon Technical Report N 77.

  • Erofeev, D.V.: 2004, An observational evidence for the Babcock–Leighton dynamo scenario. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symposium 223, 97.

    Google Scholar 

  • Gaizauskas, V., Harvey, K.L., Harvey, J.W., Zwaan, C.: 1983, Large-scale patterns formed by solar active regions during the ascending phase of Cycle 21. Astrophys. J. 265, 1056.

    ADS  Google Scholar 

  • Golubeva, E.M., Mordvinov, A.V.: 2016, Decay of activity complexes, formation of unipolar magnetic regions, and coronal holes in their causal relation. Solar Phys. 291, 3605.

    ADS  Google Scholar 

  • Golubeva, E.M., Mordvinov, A.V.: 2017, Rearrangements of open magnetic flux and formation of polar coronal holes in Cycle 24. Solar Phys. 292, 175.

    ADS  Google Scholar 

  • Györi, L., Baranyi, T., Ludmány, A., Gerlei, O., Csepura, G., Mezö, G.: 2004, Debrecen photoheliographic data for the years 1993 – 1995. Publ. Debr. Heliophys. Obs. 17, 1.

    ADS  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: 2011, Variations in the axisymmetric transport of magnetic elements on the Sun: 1996 – 2010. Astrophys. J. 729, 80.

    ADS  Google Scholar 

  • Hoeksema, J.T.: 2010, Evolution of the large-scale magnetic field over three solar cycles. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symposium 264, 222.

    Google Scholar 

  • Howard, R.F.: 1991, Axial tilt angles of sunspot groups. Solar Phys. 136, 251.

    ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak solar Cycle 24. Astrophys. J. Lett. 808, L28.

    ADS  Google Scholar 

  • Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597.

    ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schmitt, D., Işık, E.: 2013, Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 553, A128.

    ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491.

    ADS  Google Scholar 

  • Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211.

    ADS  Google Scholar 

  • Kitchatinov, L.L., Mordvinov, A.V., Nepomnyashchikh, A.A.: 2018, Modelling variability of solar activity cycles. Astron. Astrophys. 615, A38.

    ADS  Google Scholar 

  • Kosovichev, A.G., Stenflo, J.O.: 2008, Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett. 688, L115.

    ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1.

    ADS  Google Scholar 

  • Li, J.: 2018, A systematic study of Hale and anti-Hale sunspot physical parameters. Astrophys. J. 867(2), 89. http://stacks.iop.org/0004-637X/867/i=2/a=89 .

    ADS  Google Scholar 

  • Li, J., Ulrich, R.K.: 2012, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758(2), 115.

    ADS  Google Scholar 

  • Lockwood, M., Owens, M.J., Imber, S.M., James, M.K., Bunce, E.J., Yeoman, T.K.: 2017, Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution. J. Geophys. Res. 122, 5870.

    Google Scholar 

  • Makarov, V.I., Fatianov, M.P., Sivaraman, K.R.: 1983, Poleward migration of the magnetic neutral line and the reversal of the polar fields on the Sun. I – Period 1945 – 1981. Solar Phys. 85, 215.

    ADS  Google Scholar 

  • Makarov, V.I., Sivaraman, K.R.: 1986, Atlas of H-alpha synoptic charts for solar cycle 19 (1955 – 1964). Carrington solar rotations 1355 to 1486. Kodaikanal Obs. Bull. 7, 138.

    Google Scholar 

  • McClintock, B.H., Norton, A.A.: 2013, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Solar Phys. 287, 215.

    ADS  Google Scholar 

  • McClintock, B.H., Norton, A.A.: 2016, Tilt angle and footpoint separation of small and large bipolar sunspot regions observed with HMI. Astrophys. J. 818, 7.

    ADS  Google Scholar 

  • McIntosh, P.S.: 1979, Annotated atlas of H-alpha synoptic charts for solar Cycle 20 (1964 – 1974) Carrington solar rotations 1487 – 1616. NASA STI/Recon Technical Report N 79.

  • Mordvinov, A.V., Yazev, S.A.: 2014, Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 289, 1971.

    ADS  Google Scholar 

  • Mordvinov, A.V., Grigoryev, V.M., Erofeev, D.V.: 2015, Evolution of sunspot activity and inversion of the Sun’s polar magnetic field in the current cycle. Adv. Space Res. 55, 2739.

    ADS  Google Scholar 

  • Mordvinov, A., Pevtsov, A., Bertello, L., Petri, G.: 2016, The reversal of the Sun’s magnetic field in Cycle 24. J. Solar-Terr. Phys. 2(1), 3.

    ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory prediction: insights from a century of magnetic proxies. Astrophys. Lett. 767, L25.

    ADS  Google Scholar 

  • Olemskoy, S.V., Kitchatinov, L.L.: 2013, Grand minima and North–South asymmetry of solar activity. Astrophys. J. 777, 71.

    ADS  Google Scholar 

  • Petrie, G.J.D.: 2015, Solar magnetism in the polar regions. Living Rev. Solar Phys. 12, 5.

    ADS  Google Scholar 

  • Petrie, G., Ettinger, S.: 2017, Polar field reversals and active region decay. Space Sci. Rev. 210, 77.

    ADS  Google Scholar 

  • Pevtsov, A.A., Berger, M.A., Nindos, A., Norton, A.A., van Driel-Gesztelyi, L.: 2014, Magnetic helicity, tilt, and twist. Space Sci. Rev. 186, 285.

    ADS  Google Scholar 

  • Schrijver, C.J., Zwaan, C.: 2000, Solar and Stellar Magnetic Activity, Cambridge University Press, Cambridge.

    Google Scholar 

  • Sheeley, N.R. Jr., Wang, Y.-M.: 2016, Bipolar magnetic regions determined from Kitt Peak vacuum telescope magnetograms. DOI .

  • Snodgrass, H.B., Kress, J.M., Wilson, P.R.: 2000, Observations of the polar magnetic fields during the polarity reversals of Cycle 22. Solar Phys. 191, 1.

    ADS  Google Scholar 

  • Sokoloff, D., Khlystova, A., Abramenko, V.: 2015, Solar small-scale dynamo and polarity of sunspot groups. Mon. Not. Roy. Astron. Soc. 451, 1522.

    ADS  Google Scholar 

  • Starck, J.-L., Murtagh, F.: 2006, Astronomical Image and Data Analysis, Springer, Berlin, 360.

    Google Scholar 

  • Stenflo, J.O., Kosovichev, A.G.: 2012, Bipolar magnetic regions on the Sun: Global analysis of the SOHO/MDI data set. Astrophys. J. 745(2), 129.

    ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during Solar Cycle 24. Astrophys. J. 798, 114.

    ADS  Google Scholar 

  • Tlatova, K., Tlatov, A., Pevtsov, A., Mursula, K., Vasil’eva, V., Heikkinen, E., Bertello, L., Pevtsov, A., Virtanen, I., Karachik, N.: 2018, Tilt of sunspot bipoles in Solar Cycles 15 to 24. Solar Phys. 293, 118.

    ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014, Effects of meridional flow variations on Solar Cycles 23 and 24. Astrophys. J. 792(2), 142.

    ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R.: 1989, Average properties of bipolar magnetic regions during sunspot Cycle 21. Solar Phys. 124(1), 81.

    ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the Sun’s dipole moment – New twists to the Babcock–Leighton model. Astrophys. J. 375, 761.

    ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2004, Footpoint switching and the evolution of coronal holes. Astrophys. J. 612(2), 1196.

    ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I., McFadden, R., Emery, B.A., Malanushenko, A.V.: 2017, Studies of global solar magnetic field patterns using a newly digitized archive. In: AGU Fall Meeting Abstracts.

    Google Scholar 

  • Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during Solar Cycle 24. Solar Phys. 290, 3189.

    ADS  Google Scholar 

Download references

Acknowledgements

This research uses synoptic magnetograms from the WSO and Kitt Peak observatories. We also used sunspot group tilt data from the Mount Wilson and Debrecen observatories. The synoptic maps from the McIntosh archive were also used in this research. We are grateful to A.I. Khlystova for preparing data on anti-Hale active regions, and J. Sutton for improving the English version of the manuscript. The work was supported by Basic Research program II.16 and the RFBR project 17-02-00016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mordvinov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mordvinov, A.V., Kitchatinov, L.L. Evolution of the Sun’s Polar Fields and the Poleward Transport of Remnant Magnetic Flux. Sol Phys 294, 21 (2019). https://doi.org/10.1007/s11207-019-1410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1410-1

Keywords

  • Magnetic fields, photosphere
  • Active regions
  • Solar cycle, observations