Estimating Total Open Heliospheric Magnetic Flux

Abstract

Over the solar-activity cycle, there are extended periods where significant discrepancies occur between the spacecraft-observed total (unsigned) open magnetic flux and that determined from coronal models. In this article, the total open heliospheric magnetic flux is computed using two different methods and then compared with results obtained from in-situ interplanetary magnetic-field observations. The first method uses two different types of photospheric magnetic-field maps as input to the Wang–Sheeley–Arge (WSA) model: i) traditional Carrington or diachronic maps, and ii) Air Force Data Assimilative Photospheric Flux Transport model synchronic maps. The second method uses observationally derived helium and extreme-ultraviolet coronal-hole maps overlaid on the same magnetic-field maps in order to compute total open magnetic flux. The diachronic and synchronic maps are both constructed using magnetograms from the same source, namely the National Solar Observatory Kitt Peak Vacuum Telescope and Vector Spectromagnetograph. The results of this work show that the total open flux obtained from observationally derived coronal holes agrees remarkably well with that derived from WSA, especially near solar minimum. This suggests that, on average, coronal models capture well the observed large-scale coronal-hole structure over most of the solar cycle. Both methods show considerable deviations from total open flux deduced from spacecraft data, especially near solar maximum, pointing to something other than poorly determined coronal-hole area specification as the source of these discrepancies.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    ADS  Article  Google Scholar 

  2. Arden, W.M., Norton, A.A., Sun, X.: 2014, A “breathing” source surface for cycles 23 and 24. J. Geophys. Res. 119, 1476. DOI . ADS .

    Article  Google Scholar 

  3. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI . ADS .

    ADS  Article  Google Scholar 

  4. Arge, C.N., Hildner, E., Pizzo, V.J., Harvey, J.W.: 2002, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107, 1319. DOI . ADS .

    Article  Google Scholar 

  5. Arge, C.N., Harvey, K.L., Hudson, H.S., Kahler, S.W.: 2003b, Narrow coronal holes in Yohkoh soft X-ray images and the slow solar wind. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 202. DOI . ADS .

    Google Scholar 

  6. Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003a, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 190. DOI . ADS .

    Google Scholar 

  7. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI . ADS .

    ADS  Article  Google Scholar 

  8. Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Solar Wind 12 CS-1216, Am. Inst. Phys., Melville, 343. DOI . ADS .

    Google Scholar 

  9. Arge, C.N., Henney, C.J., Koller, J., Toussaint, W.A., Harvey, J.W., Young, S.: 2011, Improving data drivers for coronal and solar wind models. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) 5th International Conference of Numerical Modeling of Space Plasma Flows, Astronum 2010, CS-444, Astron. Soc. Pacific, San Francisco, 99. ADS .

    Google Scholar 

  10. Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 11. DOI . ADS .

    Google Scholar 

  11. Boucheron, L.E., Valluri, M., McAteer, R.T.J.: 2016, Segmentation of coronal holes using active contours without edges. Solar Phys. 291, 2353. DOI . ADS .

    ADS  Article  Google Scholar 

  12. Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole mapping using multi-instrument EUV images: data preparation and detection method. Astrophys. J. 823, 53. DOI . ADS .

    ADS  Article  Google Scholar 

  13. Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI . ADS .

    ADS  Article  Google Scholar 

  14. de Toma, G., Arge, C.N., Riley, P.: 2005, Observed and modeled coronal holes. AGU Spring Meet. Abs., SH24A. ADS .

  15. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    ADS  Article  Google Scholar 

  16. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Garton, T.M., Gallagher, P.T., Murray, S.A.: 2018, Automated coronal hole identification via multi-thermal intensity segmentation. J. Space Weather Space Clim. 8, A02. DOI . ADS .

    ADS  Article  Google Scholar 

  18. Hamada, A., Asikainen, T., Virtanen, I., Mursula, K.: 2018, Automated identification of coronal holes from synoptic EUV maps. Solar Phys. 293, 71. DOI . ADS .

    ADS  Article  Google Scholar 

  19. Harvey, J.W.: 2013, The Sun in time. Space Sci. Rev. 176, 47. DOI . ADS .

    ADS  Article  Google Scholar 

  20. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during Cycles 22 and 23. Solar Phys. 211, 31. DOI . ADS .

    ADS  Article  Google Scholar 

  21. Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He II 304 Å and He I 10,830 Å spectroheliograms. Solar Phys. 54, 343. DOI . ADS .

    ADS  Article  Google Scholar 

  22. Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar Activity CS-346, Astron. Soc. Pacific, San Francisco, 261. ADS .

    Google Scholar 

  23. Henney, C.J., Keller, C.U., Harvey, J.W., Georgoulis, M.K., Hadder, N.L., Norton, A.A., Raouafi, N.-E., Toussaint, R.M.: 2009, SOLIS vector spectromagnetograph: status and science. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 CS-405, Astron. Soc. Pacific, San Francisco, 47. ADS .

    Google Scholar 

  24. Hickmann, K.S., Godinez, H.C., Henney, C.J., Arge, C.N.: 2015, Data assimilation in the ADAPT photospheric flux transport model. Solar Phys. 290, 1105. DOI . ADS .

    ADS  Article  Google Scholar 

  25. Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet – 1978 – 1982. J. Geophys. Res. 88, 9910. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    ADS  Article  Google Scholar 

  27. Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211. DOI . ADS .

    ADS  Article  Google Scholar 

  28. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    ADS  Article  Google Scholar 

  29. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI . ADS .

    ADS  Article  Google Scholar 

  30. Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI . ADS .

    ADS  Article  Google Scholar 

  31. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    ADS  Article  Google Scholar 

  32. Linker, J.A., Mikić, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2013, Coronal and heliospheric modeling using flux-evolved maps. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 26. DOI . ADS .

    Google Scholar 

  33. Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikic, Z., Henney, C.J., Arge, C.N., Kim, T., Pogorelov, N.: 2016, An empirically driven time-dependent model of the solar wind. J. Phys. Conf. Ser. 719, 012012.

    Article  Google Scholar 

  34. Linker, J.A., Caplan, R.M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C.J., Arge, C.N., Liu, Y., Derosa, M.L., Yeates, A., Owens, M.J.: 2017, The open flux problem. Astrophys. J. 848, 70. DOI . ADS .

    ADS  Article  Google Scholar 

  35. Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902. DOI . ADS .

    ADS  Article  Google Scholar 

  36. Lockwood, M., Owens, M.: 2009, The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux. Astrophys. J. 701, 964. DOI . ADS .

    ADS  Article  Google Scholar 

  37. Lockwood, M., Owens, M., Rouillard, A.P.: 2009a, Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. 114, A11103. DOI . ADS .

    ADS  Article  Google Scholar 

  38. Lockwood, M., Owens, M., Rouillard, A.P.: 2009b, Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. J. Geophys. Res. 114, A11104. DOI . ADS .

    ADS  Article  Google Scholar 

  39. Lockwood, M., Forsyth, R., Balogh, A., McComas, D.: 2004, Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft. Ann. Geophys. 22, 1395. DOI . ADS .

    ADS  Article  Google Scholar 

  40. Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over Cycles 23 and 24. Solar Phys. 292, 18. DOI . ADS .

    ADS  Article  Google Scholar 

  41. Lowder, C., Qiu, J., Leamon, R., Liu, Y.: 2014, Measurements of EUV coronal holes and open magnetic flux. Astrophys. J. 783, 142. DOI . ADS .

    ADS  Article  Google Scholar 

  42. Owens, M.J., Crooker, N.U.: 2006, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. 111, A10104. DOI . ADS .

    ADS  Article  Google Scholar 

  43. Owens, M.J., Crooker, N.U., Lockwood, M.: 2011, How is open solar magnetic flux lost over the solar cycle? J. Geophys. Res. 116, A04111. DOI . ADS .

    ADS  Article  Google Scholar 

  44. Owens, M.J., Schwadron, N.A., Crooker, N.U., Hughes, W.J., Spence, H.E.: 2007, Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, L06104. DOI . ADS .

    ADS  Article  Google Scholar 

  45. Owens, M.J., Arge, C.N., Crooker, N.U., Schwadron, N.A., Horbury, T.S.: 2008a, Estimating total heliospheric magnetic flux from single-point in situ measurements. J. Geophys. Res. 113, A12103. DOI . ADS .

    ADS  Article  Google Scholar 

  46. Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008b, Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001. DOI . ADS .

    ADS  Article  Google Scholar 

  47. Owens, M.J., Lockwood, M., Riley, P., Linker, J.: 2017, Sunward strahl: A method to unambiguously determine open solar flux from in situ spacecraft measurements using suprathermal electron data. J. Geophys. Res. 122, 10. DOI . ADS .

    Article  Google Scholar 

  48. Pattchis, M.S., Venkatesh, J., Hock, R.A., Henney, C.J., Arge, C.N.: 2014, Detecting coronal holes for solar activity modeling. In: 48th Asilomar Conference on Signals, Systems and Computers, Curran Associates, Red Hook, 89. DOI .

    Google Scholar 

  49. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    ADS  Article  Google Scholar 

  50. Riley, P.: 2007, An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys. J. Lett. 667, L97. DOI . ADS .

    ADS  Article  Google Scholar 

  51. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI . ADS .

    ADS  Article  Google Scholar 

  52. Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI . ADS .

    ADS  Article  Google Scholar 

  53. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    ADS  Article  Google Scholar 

  54. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425. DOI . ADS .

    ADS  Article  Google Scholar 

  55. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    ADS  Article  Google Scholar 

  56. Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the south polar cap at solar maximum: Heliospheric magnetic field. Geophys. Res. Lett. 28, 4159. DOI . ADS .

    ADS  Article  Google Scholar 

  57. Svalgaard, L.: 2006, Polar fields, large-scale fields, “magnetic memory”, and solar cycle prediction (accessed on 12 July 2018). www.predsci.com/~pete/research/magnetogram-workshops/1st-workshop/presentations/Leif_Svalgaard_SC24Pred_06.pdf .

  58. Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225. DOI . ADS .

    ADS  Article  Google Scholar 

  59. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374. DOI . ADS .

    ADS  Article  Google Scholar 

  60. Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29. DOI . ADS .

    ADS  Article  Google Scholar 

  61. Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505. DOI . ADS .

    ADS  Article  Google Scholar 

  62. Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI . ADS .

    ADS  Article  Google Scholar 

  63. Wang, Y.-M., Sheeley, N.R. Jr.: 1995, Solar implications of ULYSSES interplanetary field measurements. Astrophys. J. Lett. 447, L143. DOI . ADS .

    ADS  Article  Google Scholar 

  64. Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195, 247. DOI . ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Air Force Scholars Program. We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service and OMNI data. This work utilizes ADAPT maps produced collaboratively between AFRL and NSO/NISP. NSO/Kitt Peak data used here are produced cooperatively by NSF/NSO, NASA/GSFC, and NOAA/SEL. SOLIS data for this work are obtained and managed by NSO/NISP, operated by AURA, Inc. under a cooperative agreement with NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Wallace.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wallace, S., Arge, C.N., Pattichis, M. et al. Estimating Total Open Heliospheric Magnetic Flux. Sol Phys 294, 19 (2019). https://doi.org/10.1007/s11207-019-1402-1

Download citation

Keywords

  • Magnetic fields, interplanetary
  • Coronal holes
  • Corona, models