Skip to main content

Solar Flare Forecasting from Magnetic Feature Properties Generated by the Solar Monitor Active Region Tracker

Abstract

We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141.

    Article  ADS  Google Scholar 

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI .

    Article  ADS  Google Scholar 

  • Al-Ghraibah, A., Boucheron, L.E., McAteer, R.T.J.: 2015, An automated classification approach to ranking photospheric proxies of magnetic energy build-up. Astron. Astrophys. 579, A64.

    Article  ADS  Google Scholar 

  • Allaire, J., Chollet, F.: 2017, Keras: R Interface to ‘Keras’. R package version 2.1.5.9002.

  • Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. DOI .

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the “All-Clear” workshop. Astrophys. J. 829(2), 89. DOI .

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, 2.

    Article  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI .

    Article  ADS  Google Scholar 

  • Boucheron, L.E., Al-Ghraibah, A., McAteer, R.T.J.: 2015, Prediction of solar flare size and time-to-flare using support vector machine regression. Astrophys. J. 812(1), 51.

    Article  ADS  Google Scholar 

  • Breiman, L.: 2001, Random forests. Mach. Learn. 45(1), 5.

    Article  MATH  Google Scholar 

  • Chawla, N.V., Japkowicz, N., Kotcz, A.: 2004, Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1. DOI .

    Article  Google Scholar 

  • Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277. DOI .

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, S06001. DOI .

    Article  ADS  Google Scholar 

  • Cox, D.R.: 1958, The regression analysis of binary sequences (with discussion). J. Roy. Stat. Soc. B 20, 215.

    MATH  Google Scholar 

  • Daei, F., Safari, H., Dadashi, N.: 2017, Complex network for solar active regions. Astrophys. J. 845(1), 36.

    Article  ADS  Google Scholar 

  • Domijan, K.: 2016, BKPC: Bayesian Kernel Projection Classifier. R package version 1.0.

  • Domijan, K., Wilson, S.P.: 2011, Bayesian kernel projections for classification of high dimensional data. Stat. Comput. 21(2), 203.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudoit, S., Fridlyand, J., Speed, T.P.: 2002, Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, R.A.: 1936, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179.

    Article  Google Scholar 

  • Fithian, W., Hastie, T.: 2014, Local case-control sampling: efficient subsampling in imbalanced data sets. Ann. Stat. 42(5), 1693. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: 2009, GLMNET: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 1.1-4.

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661(1), L109.

    Article  ADS  Google Scholar 

  • Géron, A.: 2018, Neural Networks and Deep Learning, O’Reilly Media, Inc, Sebastopol, CA, USA.

    Google Scholar 

  • Gheibi, A., Safari, H., Javaherian, M.: 2017, The solar flare complex network. Astrophys. J. 847(2), 115.

    Article  ADS  Google Scholar 

  • Hanssen, A.W., Kuipers, W.J.A.: 1965, On the Relationship Between the Frequency of Rain and Various Meteorological Parameters: (with Reference to the Problem of Objective Forecasting), Koninkl. Nederlands Meterologisch Institut. Mededelingen en Verhandelingen 81, Staatsdrukerij, Netherlands.

    Google Scholar 

  • Heidke, P.: 1926, Berechnung des erfolges und der güte der windstärkevorhersagen im sturmwarnungsdienst. Geogr. Ann. 8, 301. DOI .

    Article  MATH  Google Scholar 

  • Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105.

    Article  ADS  Google Scholar 

  • Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: 2018, Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms. Astrophys. J. 856(1), 7.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656(2), 1173.

    Article  ADS  Google Scholar 

  • Liaw, A., Wiener, M.: 2002, Classification and regression by randomForest. R News 2(3), 18.

    Google Scholar 

  • Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017a, Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843(2), 104.

    Article  ADS  Google Scholar 

  • Liu, J.-F., Li, F., Zhang, H.-P., Yu, D.-R.: 2017b, Short-term solar flare prediction using image-case-based reasoning. Res. Astron. Astrophys. 17(11), 116.

    Article  ADS  Google Scholar 

  • Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723(1), 634.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J. 631, 628. DOI .

    Article  ADS  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: 2017, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8.

  • Nelder, J.A., Wedderburn, R.W.M.: 1972, Generalized linear models. J. Roy. Stat. Soc., Ser. A-G 135, 370.

    Article  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: 2017, Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys. J. 835(2), 156. DOI .

    Article  ADS  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018, Deep flare net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113.

    Article  ADS  Google Scholar 

  • Qahwaji, R., Colak, T., Al-Omari, M., Ipson, S.: 2008, Automated prediction of CMEs using machine learning of CME – flare associations. Solar Phys. 248, 471. DOI .

    Article  ADS  Google Scholar 

  • R Core Team: 2017, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Raboonik, A., Safari, H., Alipour, N., Wheatland, M.S.: 2017, Prediction of solar flares using unique signatures of magnetic field images. Astrophys. J. 834(1), 11.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., Team, M.E.: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162(1-2), 129. DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655(2), L117.

    Article  ADS  Google Scholar 

  • Soetaert, K.: 2017, plot3d: Plotting Multi-dimensional Data. R package version 1.1.1.

  • Tibshirani, R.: 1996, Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267.

    MathSciNet  MATH  Google Scholar 

  • Vapnik, V.: 1998, Statistical Learning Theory, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Wickham, H.: 2009, ggplot2: Elegant Graphics for Data Analysis, Springer, New York. 978-0-387-98140-6.

    Book  MATH  Google Scholar 

  • Yang, X., Lin, G., Zhang, H., Mao, X.: 2013, Magnetic nonpotentiality in photospheric active regions as a predictor of solar flares. Astrophys. J. Lett. 774(2), L27.

    Article  ADS  Google Scholar 

  • Youden, W.J.: 1950, Index for rating diagnostic tests. Cancer 3, 32.

    Article  Google Scholar 

  • Yu, D., Huang, X., Wang, H., Cui, Y., Hu, Q., Zhou, R.: 2010, Short-term solar flare level prediction using a Bayesian network approach. Astrophys. J. 710(1), 869.

    Article  ADS  Google Scholar 

Download references

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Domijan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domijan, K., Bloomfield, D.S. & Pitié, F. Solar Flare Forecasting from Magnetic Feature Properties Generated by the Solar Monitor Active Region Tracker. Sol Phys 294, 6 (2019). https://doi.org/10.1007/s11207-018-1392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1392-4

Keywords