Abstract
We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.
This is a preview of subscription content, access via your institution.






References
Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141.
Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI .
Al-Ghraibah, A., Boucheron, L.E., McAteer, R.T.J.: 2015, An automated classification approach to ranking photospheric proxies of magnetic energy build-up. Astron. Astrophys. 579, A64.
Allaire, J., Chollet, F.: 2017, Keras: R Interface to ‘Keras’. R package version 2.1.5.9002.
Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. DOI .
Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the “All-Clear” workshop. Astrophys. J. 829(2), 89. DOI .
Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, 2.
Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI .
Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI .
Boucheron, L.E., Al-Ghraibah, A., McAteer, R.T.J.: 2015, Prediction of solar flare size and time-to-flare using support vector machine regression. Astrophys. J. 812(1), 51.
Breiman, L.: 2001, Random forests. Mach. Learn. 45(1), 5.
Chawla, N.V., Japkowicz, N., Kotcz, A.: 2004, Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1. DOI .
Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277. DOI .
Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, S06001. DOI .
Cox, D.R.: 1958, The regression analysis of binary sequences (with discussion). J. Roy. Stat. Soc. B 20, 215.
Daei, F., Safari, H., Dadashi, N.: 2017, Complex network for solar active regions. Astrophys. J. 845(1), 36.
Domijan, K.: 2016, BKPC: Bayesian Kernel Projection Classifier. R package version 1.0.
Domijan, K., Wilson, S.P.: 2011, Bayesian kernel projections for classification of high dimensional data. Stat. Comput. 21(2), 203.
Dudoit, S., Fridlyand, J., Speed, T.P.: 2002, Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77.
Fisher, R.A.: 1936, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179.
Fithian, W., Hastie, T.: 2014, Local case-control sampling: efficient subsampling in imbalanced data sets. Ann. Stat. 42(5), 1693. DOI .
Friedman, J., Hastie, T., Tibshirani, R.: 2009, GLMNET: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 1.1-4.
Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661(1), L109.
Géron, A.: 2018, Neural Networks and Deep Learning, O’Reilly Media, Inc, Sebastopol, CA, USA.
Gheibi, A., Safari, H., Javaherian, M.: 2017, The solar flare complex network. Astrophys. J. 847(2), 115.
Hanssen, A.W., Kuipers, W.J.A.: 1965, On the Relationship Between the Frequency of Rain and Various Meteorological Parameters: (with Reference to the Problem of Objective Forecasting), Koninkl. Nederlands Meterologisch Institut. Mededelingen en Verhandelingen 81, Staatsdrukerij, Netherlands.
Heidke, P.: 1926, Berechnung des erfolges und der güte der windstärkevorhersagen im sturmwarnungsdienst. Geogr. Ann. 8, 301. DOI .
Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105.
Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: 2018, Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms. Astrophys. J. 856(1), 7.
Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656(2), 1173.
Liaw, A., Wiener, M.: 2002, Classification and regression by randomForest. R News 2(3), 18.
Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017a, Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843(2), 104.
Liu, J.-F., Li, F., Zhang, H.-P., Yu, D.-R.: 2017b, Short-term solar flare prediction using image-case-based reasoning. Res. Astron. Astrophys. 17(11), 116.
Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723(1), 634.
McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J. 631, 628. DOI .
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: 2017, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8.
Nelder, J.A., Wedderburn, R.W.M.: 1972, Generalized linear models. J. Roy. Stat. Soc., Ser. A-G 135, 370.
Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: 2017, Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys. J. 835(2), 156. DOI .
Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018, Deep flare net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113.
Qahwaji, R., Colak, T., Al-Omari, M., Ipson, S.: 2008, Automated prediction of CMEs using machine learning of CME – flare associations. Solar Phys. 248, 471. DOI .
R Core Team: 2017, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Raboonik, A., Safari, H., Alipour, N., Wheatland, M.S.: 2017, Prediction of solar flares using unique signatures of magnetic field images. Astrophys. J. 834(1), 11.
Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., Team, M.E.: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162(1-2), 129. DOI .
Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655(2), L117.
Soetaert, K.: 2017, plot3d: Plotting Multi-dimensional Data. R package version 1.1.1.
Tibshirani, R.: 1996, Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267.
Vapnik, V.: 1998, Statistical Learning Theory, Wiley-Interscience, New York.
Wickham, H.: 2009, ggplot2: Elegant Graphics for Data Analysis, Springer, New York. 978-0-387-98140-6.
Yang, X., Lin, G., Zhang, H., Mao, X.: 2013, Magnetic nonpotentiality in photospheric active regions as a predictor of solar flares. Astrophys. J. Lett. 774(2), L27.
Youden, W.J.: 1950, Index for rating diagnostic tests. Cancer 3, 32.
Yu, D., Huang, X., Wang, H., Cui, Y., Hu, Q., Zhou, R.: 2010, Short-term solar flare level prediction using a Bayesian network approach. Astrophys. J. 710(1), 869.
Disclosure of Potential Conflicts of Interest
The authors declare that they have no conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Domijan, K., Bloomfield, D.S. & Pitié, F. Solar Flare Forecasting from Magnetic Feature Properties Generated by the Solar Monitor Active Region Tracker. Sol Phys 294, 6 (2019). https://doi.org/10.1007/s11207-018-1392-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-018-1392-4