Skip to main content

Advertisement

Log in

Physical Processes Involved in the EUV “Surge” Event of 9 May 2012

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study an extreme ultraviolet (EUV) confined ejection observed on 9 May 2012 in Active Region (AR) NOAA 11476. For the analysis we use observations in multiple wavelengths (EUV, X-rays, H\(\upalpha\), and magnetograms) from a variety of ground- and space-based instruments. The magnetic configuration showed two rotating bipoles within the following polarity of the AR. This evolution was present some tens of hours before the studied event and continued thereafter. During this period, the magnetic flux of both bipoles continuously decreased. A mini-filament with a length of \({\approx}\,30''\) lay along the photospheric inversion line of the largest bipole. The mini-filament was observed to erupt, accompanied by an M4.7 flare (SOL20120509T12:23:00). This injected dense material as well as twist along closed loops in the form of a very broad ejection whose morphology resembled that of typical H\(\upalpha\) surges. We conclude that the flare and eruption can be explained as due to two reconnection processes, one occurring below the erupting mini-filament, and another above it. This second process injects the mini-filament plasma within the reconnected closed loops linking the main AR polarities. By analyzing the magnetic topology using a force-free model of the coronal field, we identify the location of quasi-separatix layers, where reconnection is prone to occur, and present a detailed interpretation of the chromospheric and coronal eruption observations. In particular, this event, in contrast to what has been proposed in several models explaining surges and/or jets, is not produced by magnetic flux emergence, but by magnetic flux cancellation accompanied by the rotation of the bipoles. In fact, the conjunction of these two processes, flux cancellation and bipole rotations, is at the origin of a series of events, homologous to the event we analyze in this article, which occurred in AR 11476 from 8 to 10 May 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Adams, M., Sterling, A.C., Moore, R.L., Gary, G.A.: 2014, A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole. Astrophys. J. 783, 11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADS .

    ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G.: 1999, The new H\(\alpha\) solar telescope at the German–Argentinian solar observatory. In: Wilson, A., et al. (eds.) Magnetic Fields and Solar Processes, ESA Special Publication 448, 469. ADS .

    Google Scholar 

  • Bagalá, L.G., Mandrini, C.H., Rovira, M.G., Démoulin, P.: 2000, Magnetic reconnection: a common origin for flares and AR interconnecting arcs. Astron. Astrophys. 363, 779. ADS .

    ADS  Google Scholar 

  • Brooks, D.H., Kurokawa, H., Berger, T.E.: 2007, An H\(\alpha\) surge provoked by moving magnetic features near an emerging flux region. Astrophys. J. 656, 1197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Büchner, J.: 2006, Locating current sheets in the solar corona. Space Sci. Rev. 122, 149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Canfield, R.C., Reardon, K.P., Leka, K.D., Shibata, K., Yokoyama, T., Shimojo, M.: 1996, H alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chae, J., Qiu, J., Wang, H., Goode, P.R.: 1999, Extreme-ultraviolet jets and H\(\alpha\) surges in solar microflares. Astrophys. J. Lett. 513, L75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Mandrini, C.H., Schmieder, B., Joshi, B., Cristiani, G.D., Cremades, H., Pariat, E., Nuevo, F.A., Srivastava, A.K., Uddin, W.: 2017, Blowout jets and impulsive eruptive flares in a bald-patch topology. Astron. Astrophys. 598, A41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cristiani, G., Martinez, G., Mandrini, C.H., Giménez de Castro, C.G., da Silva, C.W., Rovira, M.G., Kaufmann, P.: 2007, Spatial characterization of a flare using radio observations and magnetic field topology. Solar Phys. 240, 271. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P.: 2006, Extending the concept of separatrices to QSLs for magnetic reconnection. Adv. Space Res. 37, 1269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643. ADS .

    ADS  Google Scholar 

  • Démoulin, P., Bagalá, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305. ADS .

    ADS  Google Scholar 

  • Effenberger, F., Thust, K., Arnold, L., Grauer, R., Dreher, J.: 2011, Numerical simulation of current sheet formation in a quasi-separatrix layer using adaptive mesh refinement. Phys. Plasmas 18, 32902.

    Article  Google Scholar 

  • Fernandez Borda, R.A., Mininni, P.D., Mandrini, C.H., Gómez, D.O., Bauer, O.H., Rovira, M.G.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Foukal, P.V.: 2004, Solar Astrophysics, 2nd edn., 480. ADS .

    Book  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., López fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a cme-prolific active region. Solar Phys. 208, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guglielmino, S.L., Bellot Rubio, L.R., Zuccarello, F., Aulanier, G., Vargas Domínguez, S., Kamio, S.: 2010, Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere. Astrophys. J. 724, 1083. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Démoulin, P., Schmieder, B., Ding, M.D., Vargas Domínguez, S., Liu, Y.: 2013, Recurrent coronal jets induced by repetitively accumulated electric currents. Astron. Astrophys. 555, A19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Sime, D.G., Pearce, G.: 1990, The surge events of June 28 and October 30, 1980. Astron. Astrophys. 238, 347. ADS .

    ADS  Google Scholar 

  • Heyvaerts, J., Priest, E., Rust, D.M.: 1977, An emerging flux model for solar flares. Solar Phys. 53, 255. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Pariat, E., Démoulin, P.: 2013, The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Savcheva, A., Pariat, E., Tassev, S., Millholland, S., Bommier, V., McCauley, P., McKillop, S., Dougan, F.: 2016, Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare. Astron. Astrophys. 591, A141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jibben, P., Canfield, R.C.: 2004, Twist propagation in H\(\alpha\) surges. Astrophys. J. 610, 1129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joshi, N.C., Liu, C., Sun, X., Wang, H., Magara, T., Moon, Y.-J.: 2015, The role of erupting sigmoid in triggering a flare with parallel and large-scale quasi-circular ribbons. Astrophys. J. 812, 50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joshi, N.C., Sterling, A.C., Moore, R.L., Magara, T., Moon, Y.-J.: 2017, Onset of a large ejective solar eruption from a typical coronal-jet-base field configuration. Astrophys. J. 845, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joshi, N.C., Nishizuka, N., Filippov, B., Magara, T., Tlatov, A.G.: 2018, Flux rope breaking and formation of a rotating blowout jet. Mon. Not. Roy. Astron. Soc. 476, 1286. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, H., Yang, J., Jiang, Y., Bi, Y., Qu, Z., Chen, H.: 2018, The surge-like eruption of a miniature filament associated with circular flare ribbon. Astrophys. Space Sci. 363, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Kurokawa, H.: 2004, On a surge: properties of an emerging flux region. Astrophys. J. 610, 1136. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Liu, R., Ugarte-Urra, I., Wang, S., Wang, H.: 2011, A standard-to-blowout jet. Astrophys. J. Lett. 735, L18. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Living Rev. Solar Phys. 2, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Klimchuk, J.A., Mandrini, C.H.: 2007, The temporal evolution of coronal loops observed by GOES SXI. Astrophys. J. 657, 1127. DOI . ADS .

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Poisson, M., Mandrini, C.H., Luoni, M.L., Cristiani, G.D., Démoulin, P.: 2015, Análisis de un evento eyectivo en una arcada cerrada. In: CRAAA 58, 37. http://www.astronomiaargentina.org.ar/uploads/docs/craaa58.pdf .

    Google Scholar 

  • MacTaggart, D., Guglielmino, S.L., Haynes, A.L., Simitev, R., Zuccarello, F.: 2015, The magnetic structure of surges in small-scale emerging flux regions. Astron. Astrophys. 576, A4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H.: 2010, Magnetic energy release: flares and coronal mass ejections. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) IAU Symposium 264, 257. DOI . ADS .

    Chapter  Google Scholar 

  • Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Cauzzi, G., Hofmann, A.: 1996, 3D magnetic reconnection at an X-ray bright point. Solar Phys. 168, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Schmieder, B., Deng, Y.Y., Rudawy, P.: 2002, The role of magnetic bald patches in surges and arch filament systems. Astron. Astrophys. 391, 317. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Demoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D.: 2014, Topological analysis of emerging bipole clusters producing violent solar events. Solar Phys. 289, 2041. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Baker, D., Démoulin, P., Cristiani, G.D., van Driel-Gesztelyi, L., Vargas Domínguez, S., Nuevo, F.A., Vásquez, A.M., Pick, M.: 2015, Parallel evolution of quasi-separatrix layers and active region upflows. Astrophys. J. 809, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masson, S., Aulanier, G., Pariat, E., Klein, K.-L.: 2012, Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, É., Valori, G., Deng, N., Liu, C., Wang, H., Reid, H.: 2017, Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare. Astron. Astrophys. 604, A76. DOI . ADS .

    Article  ADS  Google Scholar 

  • Milano, L.J., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Démoulin, P.: 1999, Quasi-separatrix layers in a reduced magnetohydrodynamic model of a coronal loop. Astrophys. J. 521, 889.

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Panesar, N.K.: 2018, Onset of the magnetic explosion in solar polar coronal X-ray jets. Astrophys. J. 859, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A.: 2010, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moreno-Insertis, F., Galsgaard, K.: 2013, Plasma jets and eruptions in solar coronal holes: a three-dimensional flux emergence experiment. Astrophys. J. 771, 20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nóbrega-Siverio, D., Moreno-Insertis, F., Martínez-Sykora, J.: 2016, The cool surge following flux emergence in a radiation-MHD experiment. Astrophys. J. 822, 18. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L.: 2016, Homologous jet-driven coronal mass ejections from solar active region 12192. Astrophys. J. Lett. 822, L23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L., Chakrapani, P.: 2016, Magnetic flux cancelation as the trigger of solar quiet-region coronal jets. Astrophys. J. Lett. 832, L7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2009, A model for solar polar jets. Astrophys. J. 691, 61. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Aulanier, G., Démoulin, P.: 2006, A new concept for magnetic reconnection : slip-running reconnection. In: Barret, D., Casoli, F., Lagache, G., Lecavelier, A., Pagani, L. (eds.) SF2A-2006: Semaine de L’Astrophysique Francaise, 559. ADS .

    Google Scholar 

  • Pariat, E., Dalmasse, K., DeVore, C.R., Antiochos, S.K., Karpen, J.T.: 2015, Model for straight and helical solar jets. I. Parametric studies of the magnetic field geometry. Astron. Astrophys. 573, A130. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Dalmasse, K., DeVore, C.R., Antiochos, S.K., Karpen, J.T.: 2016, A model for straight and helical solar jets. II. Parametric study of the plasma beta. Astron. Astrophys. 596, A36. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poisson, M., Mandrini, C.H., Démoulin, P., López Fuentes, M.: 2015, Evidence of twisted flux-tube emergence in active regions. Solar Phys. 290, 727. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poisson, M., Démoulin, P., López Fuentes, M., Mandrini, C.H.: 2016, Properties of magnetic tongues over a solar cycle. Solar Phys. 291, 1625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Polito, V., Del Zanna, G., Valori, G., Pariat, E., Mason, H.E., Dudík, J., Janvier, M.: 2017, Analysis and modelling of recurrent solar flares observed with Hinode/EIS on March 9, 2012. Astron. Astrophys. 601, A39. DOI . ADS .

    Article  Google Scholar 

  • Qiu, J., Gary, D.E.: 2003, Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615. DOI . ADS .

    Article  ADS  Google Scholar 

  • Raouafi, N.E., Patsourakos, S., Pariat, E., Young, P.R., Sterling, A.C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C.R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K., Matsui, Y.: 2016, Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 201, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Roy, J.R.: 1973, The magnetic properties of solar surges. Solar Phys. 28, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M., Hildner, E., Hansen, R.T., Dryer, M., McClymont, A.N., McKenna-Lawlor, S.M.P., McLean, D.J., Schmahl, E.J., Steinolfson, R.S., Tandberg-Hanssen, E.: 1980, Mass ejections. In: Sturrock, P.A. (ed.) Skylab Solar Workshop II, 273. ADS .

    Google Scholar 

  • Savcheva, A.S., van Ballegooijen, A.A., DeLuca, E.E.: 2012, Field topology analysis of a long-lasting coronal sigmoid. Astrophys. J. 744, 78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., Werner, E., DeLuca, E.E.: 2015, The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys. J. 810, 96. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmahl, E.J.: 1981, The physical relationship between flares and surges observed in the extreme ultraviolet. Solar Phys. 69, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Mein, P., Simnett, G.M., Tandberg-Hanssen, E.: 1988, An example of the association of X-ray and UV emission with H-alpha surges. Astron. Astrophys. 201, 327. ADS .

    ADS  Google Scholar 

  • Schmieder, B., Shibata, K., van Driel-Gesztelyi, L., Freeland, S.: 1995, H alpha surges and associated soft X-ray loops. Solar Phys. 156, 245. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Deng, Y.: 2012, On a coronal blowout jet: the first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 745, 164. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., Hirayama, T., Uchida, Y., et al.: 1992, Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Japan 44, L173. ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Falconer, D.A., Adams, M.: 2015, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Falconer, D.A., Panesar, N.K., Akiyama, S., Yashiro, S., Gopalswamy, N.: 2016, Minifilament eruptions that drive coronal jets in a solar active region. Astrophys. J. 821, 100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164.

    Article  Google Scholar 

  • Uddin, W., Schmieder, B., Chandra, R., Srivastava, A.K., Kumar, P., Bisht, S.: 2012, Observations of multiple surges associated with magnetic activities in AR 10484 on 2003 October 25. Astrophys. J. 752, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vargas Domínguez, S., Kosovichev, A., Yurchyshyn, V.: 2014, Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response. Astrophys. J. 794, 140. DOI . ADS .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilmot-Smith, A.L., Hornig, G., Pontin, D.I.: 2009, Magnetic braiding and parallel electric fields. Astrophys. J. 696, 1339.

    Article  ADS  Google Scholar 

  • Wyper, P.F., Antiochos, S.K., DeVore, C.R.: 2017, A universal model for solar eruptions. Nature 544, 452. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wyper, P.F., DeVore, C.R., Antiochos, S.K.: 2018, A breakout model for solar coronal jets with filaments. Astrophys. J. 852, 98. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yang, S., Zhang, J.: 2018, Mini-filament eruptions triggering confined solar flares observed by ONSET and SDO. Astrophys. J. Lett. 860, L25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 1995, Magnetic reconnection as the origin of X-ray jets and H\(\alpha\) surges on the Sun. Nature 375, 42. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 1996, MHD simulation of solar coronal X-ray jets: emerging flux reconnection model. Astrophys. Lett. Commun. 34, 133. ADS .

    ADS  Google Scholar 

  • Young, P.R., Muglach, K.: 2014a, A coronal hole jet observed with Hinode and the solar dynamics observatory. Publ. Astron. Soc. Japan 66, S12. DOI . ADS .

    Article  ADS  Google Scholar 

  • Young, P.R., Muglach, K.: 2014b, Solar dynamics observatory and Hinode observations of a blowout jet in a coronal hole. Solar Phys. 289, 3313. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, J., Li, H., Pariat, E., Schmieder, B., Guo, Y., Wiegelmann, T.: 2014, Temporal evolution of the magnetic topology of the NOAA active region 11158. Astrophys. J. 787, 88. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the insightful referee, who stimulated us to improve several parts of the manuscript. The authors would like to thank Carlos Francile from the Astronomical Observatory Felix Aguilar, University of San Juan, for his invaluable help in the processing of HASTA data. MLF, CHM and GC are members of the Carrera del Investigador Científico of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina. MP and FL are CONICET Fellows. MP, MLF, GC and CHM acknowledge financial support from the Argentinean grants PICT 2012-0973 (ANPCyT), UBACyT 20020130100321 and PIP 2012-01-403 (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo López Fuentes.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Fuentes, M., Mandrini, C.H., Poisson, M. et al. Physical Processes Involved in the EUV “Surge” Event of 9 May 2012. Sol Phys 293, 166 (2018). https://doi.org/10.1007/s11207-018-1384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1384-4

Keywords

Navigation