Skip to main content

The Problem of the Height Dependence of Magnetic Fields in Sunspots

Abstract

To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of −2 to −3 G km−1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of −0.5 G km−1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around −0.5 G km−1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300 – 2000 GHz.

Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.

Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  • Abdussamatov, H.I.: 1971, On the magnetic fields and motions in sunspots at different atmospheric levels. Solar Phys. 16, 384. DOI . ADS .

    ADS  Google Scholar 

  • Akhmedov, S.B., Gelfreikh, G.B., Bogod, V.M., Korzhavin, A.N.: 1982, The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission. Solar Phys. 79, 41. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H.: 1985, On the contribution of horizontal granular motions to observed limb-effect curves. Solar Phys. 99, 31. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H.: 2006, Vertical current densities and magnetic gradients in sunspots. Astron. Astrophys. 449, 1169. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H., Bommier, V.: 2009, The height dependence of the magnetic vector field in sunspots. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 in Honor of Jan Olof Stenflo, Astron. Soc. Pacific Conf. Ser. 405, 229. ADS .

    Google Scholar 

  • Balthasar, H., Collados, M.: 2005, Some properties of an isolated sunspot. Astron. Astrophys. 429, 705. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H., Gömöry, P.: 2008, The three-dimensional structure of sunspots, I: The height dependence of the magnetic field. Astron. Astrophys. 488, 1085. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H., Schmidt, W.: 1993, Polarimetry and spectroscopy of a simple sunspot, II: On the height and temperature dependence of the magnetic field. Astron. Astrophys. 279, 243. ADS .

    ADS  Google Scholar 

  • Balthasar, H., Beck, C., Gömöry, P., Muglach, K., Puschmann, K.G., Shimizu, T., Verma, M.: 2013, Properties of a decaying sunspot. Cent. Eur. Astrophys. Bull. 37, 435. ADS .

    ADS  Google Scholar 

  • Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014a, Near infrared spectropolarimetry of a \(\delta\)-spot. Astron. Astrophys. 562, L6. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014b, The magnetic configuaration of a \(\delta\)-spot. In: Nagendra, K.N., Stenflo, J.O., Qu, Z.Q., Sampoorna, M. (eds.) Solar Polarization 7, Astron. Soc. Pacific Conf. Ser. 489, 39. ADS .

    Google Scholar 

  • Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kavka, J., Kučera, A., Schwartz, P., Vaškova, R., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Spectropolarimetric observation of an arch filament system with the GREGOR solar telescope. Astron. Nachr. 337, 1050. DOI . ADS .

    ADS  Google Scholar 

  • Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kučera, A., Schwartz, P., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Schmidt, D., Schmidt, W., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O.: 2018, Spectropolarimetric observations of an arch filament system with the GREGOR. In: Belluzi, L. (ed.) Solar Polarization 8, Astron. Soc. Pacific Conf. Ser.. arXiv . ADS .

    Google Scholar 

  • Bellot Rubio, L.R., Balthasar, H., Collados, M.: 2004, Two magnetic components in sunspot penumbrae. Astron. Astrophys. 427, 319. DOI . ADS .

    ADS  Google Scholar 

  • Berger, T.E., Title, A.M.: 2001, On the relation of G-band bright points to the photospheric magnetic field. Astrophys. J. 553, 449. DOI . ADS .

    ADS  Google Scholar 

  • Berlicki, A., Mein, P., Schmieder, B.: 2006, THEMIS/MSDP magnetic field measurements. Astron. Astrophys. 445, 1127. DOI . ADS .

    ADS  Google Scholar 

  • Berlin, A.B., Esepkina, N.A., Zverev, Y.K., Kajdanovskij, N.L., Korol’Kov, D.V., Kopylov, A.I., Korkin, E.I., Parijskij, Y.N., Ryzhkov, N.F., Soboleva, N.S., Stotskij, A.A., Shivris, O.N.: 1977, The new radio telescope of the USSR Academy of Sciences, RATAN-600. Prib. Tekh. Eksp. 5, 8. ADS .

    Google Scholar 

  • Bommier, V.: 2013, Reconciling the vertical and horizontal gradients of the sunspot magnetic field. Phys. Res. Int. 2013, 195403. DOI . ADS .

    Google Scholar 

  • Bommier, V.: 2014, Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding. C. R. Phys. 15, 430. DOI . ADS .

    ADS  Google Scholar 

  • Bommier, V., Landi Degl’Innocenti, E., Landolfi, M., Molodij, G.: 2007, UNNOFIT inversion of spectro-polarimetric maps observed with THEMIS. Astron. Astrophys. 464, 323. DOI . ADS .

    ADS  Google Scholar 

  • Borrero, J.M.: 2007, The structure of sunspot penumbrae, IV: MHS equilibrium for penumbral flux tubes and the origin of dark core penumbral filaments and penumbral grains. Astron. Astrophys. 471, 967. DOI . ADS .

    ADS  Google Scholar 

  • Borrero, J.M., Lites, B.W., Solanki, S.K.: 2008, Evidence of magnetic field wrapping around penumbral filaments. Astron. Astrophys. 481, L13. DOI . ADS .

    ADS  Google Scholar 

  • Brosius, J.W., White, S.M.: 2006, Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophys. J. Lett. 641, L69. DOI . ADS .

    ADS  Google Scholar 

  • Bruls, J.H.M.J., Solanki, S.K., Rutten, R.J., Carlsson, M.: 1995, Infrared lines as probes of solar magnetic features VIII. Mg i 12 \(\upmu\)m diagnostics of sunspots. Astron. Astrophys. 293, 225. ADS .

    ADS  Google Scholar 

  • Chen, H.R., Chou, D.Y., Chang, H.K., Sun, M.T., Yeh, S.J., LaBonte, B., the TON Team: 1998, Probing the subsurface structure of active regions with the phase information in acoustic imaging. Astrophys. J. Lett. 501, L139. DOI . ADS .

    ADS  Google Scholar 

  • Collados, M., Martínez Pillet, V., Ruiz Cobo, B., del Toro Iniesta, J.C., Vázquez, M.: 1994, Observed differences between large and small sunspots. Astron. Astrophys. 291, 622. ADS .

    ADS  Google Scholar 

  • Collados, M., Lagg, A., Díaz García, J.J., Hernández Suárez, E., López López, R., Páez Maña, E., Solanki, S.K.: 2007, Tenerife Infrared Polarimeter II. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The physics of chromospheric plasmas, Astron. Soc. Pacific Conf. Ser. 368, 611. ADS .

    Google Scholar 

  • Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Diaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: The GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI . ADS .

    ADS  Google Scholar 

  • del Toro Iniesta, J.C., Bellot Rubio, L.R., Collados, C.: 2001, Cold, supersonic Evershed downflows in a sunspot. Astrophys. J. 549, L139. DOI . ADS .

    ADS  Google Scholar 

  • Denker, C., Heibel, C., Rendtel, J., Arlt, K., Balthasar, J.H., Diercke, A., González Manrique, S.J., Hofmann, A., Kuckein, C., Önel, H., Senthamizh Pavai, V., Staude, J., Verma, M.: 2016, Solar physics at the Einstein tower. Astron. Nachr. 337, 1105. DOI . ADS .

    ADS  Google Scholar 

  • Dunn, R.B.: 1969, Sacramento Peak’s new solar telescope. Sky Telesc. 38, 368. ADS .

    ADS  Google Scholar 

  • Eibe, M.T., Aulanier, G., Faurobert, M., Mein, P., Malherbe, J.M.: 2002, Vertical structure of sunspots from THEMIS observations. Astron. Astrophys. 381, 290. DOI . ADS .

    ADS  Google Scholar 

  • Faurobert, M., Aime, C., Périni, C., Uitenbroek, H., Grec, C., Arnaud, J., Ricort, G.: 2009, Direct measurement of the formation height difference of the 630 nm Fe i solar lines. Astron. Astrophys. 507, L29. DOI . ADS .

    ADS  Google Scholar 

  • Felipe, T., Collados, M., Khomenko, L., Kuckein, C., Asensio Ramos, A., Balthasar, H., Berkefeld, T., Denker, C., Feller, A., Franz, M., Hofmann, A., Joshi, J., Kiess, C., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Three-dimensional structure of a sunspot light bridge. Astron. Astrophys. 596, A59. DOI . ADS .

    ADS  Google Scholar 

  • Franz, M., Schlichenmaier, R.: 2013, The velocity field of sunspot penumbrae, II: Return flow and magnetic fields of opposite polarity. Astron. Astrophys. 550, A97. DOI . ADS .

    ADS  Google Scholar 

  • Franz, M., Collados, M., Bethge, C., Schlichenmaier, R., Borrero, J.M., Schmidt, W., Lagg, A., Solanki, S.K., Berkefeld, T., Kiess, C., Rezaei, R., Schmidt, D., Sigwarth, M., Soltau, D., Volkmer, R., von der Luhe, O., Waldmann, T., Orozco, D., Pastor Yabar, A., Denker, C., Balthasar, H., Staude, J., Hofmann, A., Strassmeier, K., Feller, A., Nicklas, H., Kneer, F., Sobotka, M.: 2016, Magnetic fields of opposite polarity in sunspot penumbrae. Astron. Astrophys. 596, A4. DOI . ADS .

    Google Scholar 

  • Freytag, B., Steffen, M., Dorch, B.: 2002, Spots on the surface of Betelgeuse – results from the new 3D stellar convection models. Astron. Nachr. 323, 213. DOI . ADS .

    ADS  Google Scholar 

  • Frutiger, C., Solanki, S.K., Fligge, M., Bruls, J.H.M.J.: 2000, Properties of the solar granulation obtained from the inversion of low spatial resolution spectra. Astron. Astrophys. 358, 1109. ADS .

    ADS  Google Scholar 

  • Gelly, B.F.: 2007, THEMIS Instrumentation and strategy for the future. In: Heinzel, P., Dorotovič, K.N., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astron. Soc. Pacific Conf. Ser. 368, 593. ADS .

    Google Scholar 

  • Grigoryev, V.M., Grigor’ev, V.M., Kobanov, N.I., Osak, B.F., Selivanov, V.L., Stepanov, V.E.: 1985, The vector magnetograph of the Sayan Solar Observatory. In: Hagyard, M.J. (ed.) Measurements of Solar Magnetic Vector Fields, NASA Conf. Publ. 2374, 231. ADS .

    Google Scholar 

  • Hagyard, M.J., Teuber, D., West, E.A., Tandberg-Hanssen, E., Henze, W., Beckers, J.M., Bruner, M., Hyder, C.L., Woodgate, B.E.: 1983, Vertical gradients of sunspot magnetic fields. Solar Phys. 84, 13. DOI . ADS .

    ADS  Google Scholar 

  • Hale, G.E.: 1908, On the probable existence of a magnetic field in sunspots. Astrophys. J. 28, 315. DOI . ADS .

    ADS  Google Scholar 

  • Henze, W., Tandberg-Hanssen, E., Hagyard, M.J., Woodgate, B.E., Shine, R.A., Beckers, J.M., Bruner, M., Gurman, J.B., Hyder, C.L., West, E.A.: 1982, Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot. Solar Phys. 81, 231. DOI . ADS .

    ADS  Google Scholar 

  • Hewagama, T., Deming, D., Jennings, D., Osherovich, V., Wiedemann, G., Zipoy, D., Mickey, D.L., Garcia, H.: 1993, Solar magnetic field studies using the 12 micron emission lines, II: Stokes profiles and vector field samples in sunspots. Astrophys. J. Suppl. 86, 313. DOI . ADS .

    ADS  Google Scholar 

  • Hofmann, A., Rendtel, J.: 1989, Analysis and results of cooperative magnetographic measurements, III: Vertical gradients of the magnetic field in the sunspot photosphere. Astron. Nachr. 310, 61. DOI . ADS .

    ADS  Google Scholar 

  • Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the Solar Optical Telescope onboard Hinode. Solar Phys. 249, 233. DOI . ADS .

    ADS  Google Scholar 

  • Jaeggli, S.A., Lin, H., Mickey, D.L., Kuhn, J.R., Hegwer, S.L., Rimmele, T.R., Penn, M.J.: 2010, FIRS: a new instrument for photospheric and chromospheric studies at the DST. Mem. Soc. Astron. Ital. 81, 763. ADS .

    ADS  Google Scholar 

  • Jaeggli, S.A., Lin, H., Uitenbroek, H., Rempel, M.: 2012, Comparison of multi-height observations with a 3D MHD sunspot model. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting: Exploring the Active Sun, Astron. Soc. Pacific Conf. Ser. 456, 67. ADS .

    Google Scholar 

  • Jefferies, J., Lites, B.W., Skumnaich, A.: 1989, Transfer of line radiation in a megnetic field. Astrophys. J. 343, 920. DOI . ADS .

    ADS  Google Scholar 

  • Joshi, J., Lagg, A., Solanki, S.K., Feller, A., Collados, D., Orozco Suárez, M., Schlichenmaier, R., Franz, M., Balthasar, H., Denker, C., Berkefeld, T., Hofmann, A., Kiess, C., Nicklas, H., Pastor Yabar, A., Rezaei, R., Schmidt, D., Schmidt, W., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Upper chromospheric magnetic field of a sunspot penumbra: observations of fine structure. Astron. Astrophys. 596, A8. DOI . ADS .

    Google Scholar 

  • Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K.: 2017a, Three-dimensional magnetic structure of a sunspot: Comparison of the photosphere and upper chromosphere. Astron. Astrophys. 604, A98. DOI . ADS .

    ADS  Google Scholar 

  • Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K., Tiwari, S.K.: 2017b, Vertical magnetic field gradient in the photosphereric layers of sunspots. Astron. Astrophys. 599, A35. DOI . ADS .

    ADS  Google Scholar 

  • Kollatschny, W., Stellmacher, G., Wiehr, E., Falipou, M.A.: 1980, The infrered Ca+ lines in sunspot umbrae. Astron. Astrophys. 86, 245. ADS .

    ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) Mission: An overview. Solar Phys. 243, 3. DOI . ADS .

    ADS  Google Scholar 

  • Kupka, F.: 2009, Turbulent convection and numerical simulations in solar and stellar astrophysics. In: Hillebrandt, W., Kupka, F. (eds.) Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, 756, Springer, Berlin, 49. ADS .

    Google Scholar 

  • Lagg, A., Woch, J., Krupp, N., Solanki, S.K.: 2004, Retrieval of the full magnetic vector with the He i multiplet at 1083 nm. Maps of an emerging flux region. Astron. Astrophys. 414, 1109. DOI . ADS .

    ADS  Google Scholar 

  • Liu, Y., Wang, J., Yan, Y., Ai, G.: 1996, Gradients of the line-of-sight magnetic fields in active region NOAA 6659. Solar Phys. 169, 79. DOI . ADS .

    ADS  Google Scholar 

  • Maltby, P., Averett, E.H., Carlsson, M., Kjeldset-Moe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284. DOI . ADS .

    ADS  Google Scholar 

  • Mathew, S.K., Lagg, A., Solanki, S.K., Collados, M., Borrero, J.M., Berdyugina, S., Krupp, N., Woch, J., Frutiger, C.: 2003, Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles. Astron. Astrophys. 410, 695. DOI . ADS .

    ADS  Google Scholar 

  • Mathew, S.K., Solanki, S.K., Lagg, A., Collados, M., Borrero, J.M., Berdyugina, S.: 2004, Thermal-magnetic in a sunspot and a map of its Wilson depression. Astron. Astrophys. 422, 693. DOI . ADS .

    ADS  Google Scholar 

  • Moran, T., Deming, D., Jennings, D.E., McCabe, G.: 2000, Solar magnetic field studies using the 12 micron emission lines, III: Simultaneous measurements at 12 and 1.6 microns. Astrophys. J. 553, 1035. DOI . ADS .

    ADS  Google Scholar 

  • Muglach, K., Solanki, S.K., Livingston, W.C.: 1994, Preliminary properties of pores derived from 1.56 micron lines. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institutes (ASI) Series C 433, 127. ADS .

    Google Scholar 

  • Orozco Suárez, D., Lagg, A., Solanki, S.K.: 2005, Photospheric and chromospheric magnetic structure of a sunspot. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 59. ADS .

    Google Scholar 

  • Osherovich, V.A.: 1984, A note on the values of the vertical gradient of the magnetic field in the return flux sunspot model. Solar Phys. 90, 31. DOI . ADS .

    ADS  Google Scholar 

  • Osherovich, V.A., Flaa, T.: 1983, Sunspot models with twisted magnetic field. Solar Phys. 88, 109. DOI . ADS .

    ADS  Google Scholar 

  • Osherovich, V.A., Garcia, H.A.: 1989, The relationship of sunspot magnetic fields to umbral sizes in return flux theory. Astrophys. J. 336, 468. DOI . ADS .

    ADS  Google Scholar 

  • Pahlke, K.D., Wiehr, E.: 1990, Magnetic field, relative Dopppler shift and temperature for an inhomogeneous model of sunspot umbrae. Astron. Astrophys. 228, 246. ADS .

    ADS  Google Scholar 

  • Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. 440, L109. DOI . ADS .

    ADS  Google Scholar 

  • Pierce, A.K.: 1964, The McMath solar telescope of Kitt Peak National Observatory. Appl. Opt. 3, 1337. DOI . ADS .

    ADS  Google Scholar 

  • Puschmann, K.G., Ruiz Cobo, B., Martínez Pillet, V.: 2010, A geometrical height scale for sunspot penumbrae. Astrophys. J. 720, 1417. DOI . ADS .

    ADS  Google Scholar 

  • Rempel, M.: 2011a, Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5. DOI . ADS .

    ADS  Google Scholar 

  • Rempel, M.: 2011b, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15. DOI . ADS .

    ADS  Google Scholar 

  • Rempel, M.: 2011c, Three-D numerical MHD modeling of sunspots with radiation transport. In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Starspots, IAU Symp. 273, 8. DOI . ADS .

    Google Scholar 

  • Rempel, M.: 2012, Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62. DOI . ADS .

    ADS  Google Scholar 

  • Rüedi, I., Solanki, S.K., Livingston, W.C.: 1995, Infrared lines as probes of solar magnetic features X. He i 10830 Å as a diagnostic of chromospheric magnetic fields. Astron. Astrophys. 293, 252. ADS .

    ADS  Google Scholar 

  • Ruiz Cobo, B., Asensio Ramos, A.: 2013, Returning magnetic flux in sunspot penumbrae. Astron. Astrophys. 549, L4. DOI . ADS .

    ADS  Google Scholar 

  • Ruiz Cobo, B., del Toro Iniesta, J.C.: 1992, Inversion of Stokes profiles. Astrophys. J. 398, 375. DOI . ADS .

    ADS  Google Scholar 

  • Sánchez Cuberes, M., Puschmann, K.G., Wiehr, E.: 2005, Spectropolarimetry of a sunspot at disk centre. Astron. Astrophys. 440, 345. DOI . ADS .

    ADS  Google Scholar 

  • Schad, T.A., Penn, M.J., Lin, H., Tritschler, A.: 2015, Vector magnetic field maps of a sunspot and its superpenumbral fine-structure. Solar Phys. 290, 1607. DOI . ADS .

    ADS  Google Scholar 

  • Scharmer, G.B., Bjelskjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish Solar Telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Proc. SPIE 4853, 341. DOI . ADS .

    Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello González, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI . ADS .

    ADS  Google Scholar 

  • Seehafer, N.: 1990, Electric ccurrent helicity in the solar atmosphere. Solar Phys. 125, 219. DOI . ADS .

    ADS  Google Scholar 

  • Socas-Navarro, H.: 2005, The three-dimensional structure of a sunspot magnetic field. Astrophys. J. 631, L167. DOI . ADS .

    ADS  Google Scholar 

  • Solanki, S.K., Schmidt, H.U.: 1993, Are sunspot penumbrae deep or shallow? Astron. Astrophys. 267, 287. ADS .

    ADS  Google Scholar 

  • Solanki, S.K., Walther, U., Livingston, W.: 1993, Infrared lines as probes of solar magnetic features VI. The thermal-magnetic relation and Wilson depression of a simple sunspot. Astron. Astrophys. 277, 639. ADS .

    ADS  Google Scholar 

  • Solanki, S.K.: 2003, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153. DOI . ADS .

    ADS  Google Scholar 

  • Stellmacher, G., Wiehr, E.: 1975, The deep layers of sunspot umbrae. Astron. Astrophys. 45, 69. ADS .

    ADS  Google Scholar 

  • Stupishin, A.G., Kaltman, T.I., Bogod, V.M., Yasnov, L.V.: 2018, Modeling of solar atmosphere parameters above sunspots using RATAN-600 microwave observations. Solar Phys. 293, 13. DOI . ADS .

    ADS  Google Scholar 

  • Sütterlin, P.: 1998, Properties of solar pores. Astron. Astrophys. 333, 305. ADS .

    ADS  Google Scholar 

  • Tiwari, S.K., van Noort, M., Solanki, S.K., Lagg, A.: 2015, Depth dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter. Astron. Astrophys. 583, A119. DOI . ADS .

    Google Scholar 

  • Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27. DOI . ADS .

    ADS  MATH  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI . ADS .

    ADS  Google Scholar 

  • Verma, M., Denker, C., Balthasar, C., Kuckein, H., Rezaei, R., Sobotka, M., Deng, N., Wang, H., Tritschler, A., Collados, M., Diercke, A., González Manrique, S.J.: 2018, High-resolution imaging and near-infrared spectroscopy of penumbral decay. Astron. Astrophys. 614, A2. DOI . ADS .

    ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1976, Structure of the solar chromosphere, II: The underlying photosphere and temperature-minimum region. Astrophys. J. Suppl. 30, 1. DOI . ADS .

    ADS  Google Scholar 

  • Vincent, A., Scott, P., Trampedach, R.: 2013, Light bosons and photspheric solutions to the solar abundance problem. Mon. Not. Roy. Astron. Soc. 432, 3332. DOI . ADS .

    ADS  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower Telescope on Tenerife. New Astron. Rev. 42, 493. DOI . ADS .

    ADS  Google Scholar 

  • Westendorp Plaza, C., del Toro Iniesta, J.C., Ruiz Cobo, B., Martínez Pillet, V., Lites, B.W., Skumanich, A.: 2001, Optical tomography of a sunspot, II: Vector magnetic field and temeprature stratification. Astrophys. J. 547, 1130. DOI . ADS .

    ADS  Google Scholar 

  • White, S.M.: 2005, Radio measurements of coronal magnetic fileds. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 10. ADS .

    Google Scholar 

  • Wittmann, A.: 1974, Computation and observation of Zeeman multiplet polarization in Fraunhofer lines, III: Magnetic field structure of spot Mt. Wilson 18488. Solar Phys. 36, 29. DOI . ADS .

    ADS  Google Scholar 

  • Woodgate, B.E., Tandberg-Hanssen, E.A., Bruner, E.C., Beckers, J.M., Brandt, J.C., Henze, W., Hyder, C.L., Kalet, M.W., Kenny, P.J., Knox, E.D., Michalitsianos, A.G., Rehse, R., Shine, R.A., Tinsley, H.D.: 1980, The ultraviolet spectrometer and polarimeter on the Solar Maximum Mission. Solar Phys. 65, 73. DOI . ADS .

    ADS  Google Scholar 

  • Zhang, H., Bao, S., Kuzanyan, K.M.: 2002, Twist of magnetic fields in solar active regions. Astron. Rep. 46, 424. DOI . ADS .

    ADS  Google Scholar 

Download references

Acknowledgements

I am deeply indebted to Dr. Véronique Bommier for many discussions and comments on the topic. I also thank her and Prof. Carsten Denker for carefully reading the manuscript. Dr. Matthias Steffen provided me with a model atmosphere and Dr. Matthias Rempel with a cut through one of his numerical simulations. My thanks go also to Dr. Morten Franz and Dr. Sanjiv Tiwari for the permission to use their figures (Figure 10 and Figure 2). The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max-Planck-Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Balthasar.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balthasar, H. The Problem of the Height Dependence of Magnetic Fields in Sunspots. Sol Phys 293, 120 (2018). https://doi.org/10.1007/s11207-018-1338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1338-x

Keywords