Abstract
To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of −2 to −3 G km−1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of −0.5 G km−1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around −0.5 G km−1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300 – 2000 GHz.
Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.
Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.
This is a preview of subscription content, access via your institution.











References
Abdussamatov, H.I.: 1971, On the magnetic fields and motions in sunspots at different atmospheric levels. Solar Phys. 16, 384. DOI . ADS .
Akhmedov, S.B., Gelfreikh, G.B., Bogod, V.M., Korzhavin, A.N.: 1982, The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission. Solar Phys. 79, 41. DOI . ADS .
Balthasar, H.: 1985, On the contribution of horizontal granular motions to observed limb-effect curves. Solar Phys. 99, 31. DOI . ADS .
Balthasar, H.: 2006, Vertical current densities and magnetic gradients in sunspots. Astron. Astrophys. 449, 1169. DOI . ADS .
Balthasar, H., Bommier, V.: 2009, The height dependence of the magnetic vector field in sunspots. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 in Honor of Jan Olof Stenflo, Astron. Soc. Pacific Conf. Ser. 405, 229. ADS .
Balthasar, H., Collados, M.: 2005, Some properties of an isolated sunspot. Astron. Astrophys. 429, 705. DOI . ADS .
Balthasar, H., Gömöry, P.: 2008, The three-dimensional structure of sunspots, I: The height dependence of the magnetic field. Astron. Astrophys. 488, 1085. DOI . ADS .
Balthasar, H., Schmidt, W.: 1993, Polarimetry and spectroscopy of a simple sunspot, II: On the height and temperature dependence of the magnetic field. Astron. Astrophys. 279, 243. ADS .
Balthasar, H., Beck, C., Gömöry, P., Muglach, K., Puschmann, K.G., Shimizu, T., Verma, M.: 2013, Properties of a decaying sunspot. Cent. Eur. Astrophys. Bull. 37, 435. ADS .
Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014a, Near infrared spectropolarimetry of a \(\delta\)-spot. Astron. Astrophys. 562, L6. DOI . ADS .
Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014b, The magnetic configuaration of a \(\delta\)-spot. In: Nagendra, K.N., Stenflo, J.O., Qu, Z.Q., Sampoorna, M. (eds.) Solar Polarization 7, Astron. Soc. Pacific Conf. Ser. 489, 39. ADS .
Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kavka, J., Kučera, A., Schwartz, P., Vaškova, R., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Spectropolarimetric observation of an arch filament system with the GREGOR solar telescope. Astron. Nachr. 337, 1050. DOI . ADS .
Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kučera, A., Schwartz, P., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Schmidt, D., Schmidt, W., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O.: 2018, Spectropolarimetric observations of an arch filament system with the GREGOR. In: Belluzi, L. (ed.) Solar Polarization 8, Astron. Soc. Pacific Conf. Ser.. arXiv . ADS .
Bellot Rubio, L.R., Balthasar, H., Collados, M.: 2004, Two magnetic components in sunspot penumbrae. Astron. Astrophys. 427, 319. DOI . ADS .
Berger, T.E., Title, A.M.: 2001, On the relation of G-band bright points to the photospheric magnetic field. Astrophys. J. 553, 449. DOI . ADS .
Berlicki, A., Mein, P., Schmieder, B.: 2006, THEMIS/MSDP magnetic field measurements. Astron. Astrophys. 445, 1127. DOI . ADS .
Berlin, A.B., Esepkina, N.A., Zverev, Y.K., Kajdanovskij, N.L., Korol’Kov, D.V., Kopylov, A.I., Korkin, E.I., Parijskij, Y.N., Ryzhkov, N.F., Soboleva, N.S., Stotskij, A.A., Shivris, O.N.: 1977, The new radio telescope of the USSR Academy of Sciences, RATAN-600. Prib. Tekh. Eksp. 5, 8. ADS .
Bommier, V.: 2013, Reconciling the vertical and horizontal gradients of the sunspot magnetic field. Phys. Res. Int. 2013, 195403. DOI . ADS .
Bommier, V.: 2014, Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding. C. R. Phys. 15, 430. DOI . ADS .
Bommier, V., Landi Degl’Innocenti, E., Landolfi, M., Molodij, G.: 2007, UNNOFIT inversion of spectro-polarimetric maps observed with THEMIS. Astron. Astrophys. 464, 323. DOI . ADS .
Borrero, J.M.: 2007, The structure of sunspot penumbrae, IV: MHS equilibrium for penumbral flux tubes and the origin of dark core penumbral filaments and penumbral grains. Astron. Astrophys. 471, 967. DOI . ADS .
Borrero, J.M., Lites, B.W., Solanki, S.K.: 2008, Evidence of magnetic field wrapping around penumbral filaments. Astron. Astrophys. 481, L13. DOI . ADS .
Brosius, J.W., White, S.M.: 2006, Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophys. J. Lett. 641, L69. DOI . ADS .
Bruls, J.H.M.J., Solanki, S.K., Rutten, R.J., Carlsson, M.: 1995, Infrared lines as probes of solar magnetic features VIII. Mg i 12 \(\upmu\)m diagnostics of sunspots. Astron. Astrophys. 293, 225. ADS .
Chen, H.R., Chou, D.Y., Chang, H.K., Sun, M.T., Yeh, S.J., LaBonte, B., the TON Team: 1998, Probing the subsurface structure of active regions with the phase information in acoustic imaging. Astrophys. J. Lett. 501, L139. DOI . ADS .
Collados, M., Martínez Pillet, V., Ruiz Cobo, B., del Toro Iniesta, J.C., Vázquez, M.: 1994, Observed differences between large and small sunspots. Astron. Astrophys. 291, 622. ADS .
Collados, M., Lagg, A., Díaz García, J.J., Hernández Suárez, E., López López, R., Páez Maña, E., Solanki, S.K.: 2007, Tenerife Infrared Polarimeter II. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The physics of chromospheric plasmas, Astron. Soc. Pacific Conf. Ser. 368, 611. ADS .
Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Diaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: The GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI . ADS .
del Toro Iniesta, J.C., Bellot Rubio, L.R., Collados, C.: 2001, Cold, supersonic Evershed downflows in a sunspot. Astrophys. J. 549, L139. DOI . ADS .
Denker, C., Heibel, C., Rendtel, J., Arlt, K., Balthasar, J.H., Diercke, A., González Manrique, S.J., Hofmann, A., Kuckein, C., Önel, H., Senthamizh Pavai, V., Staude, J., Verma, M.: 2016, Solar physics at the Einstein tower. Astron. Nachr. 337, 1105. DOI . ADS .
Dunn, R.B.: 1969, Sacramento Peak’s new solar telescope. Sky Telesc. 38, 368. ADS .
Eibe, M.T., Aulanier, G., Faurobert, M., Mein, P., Malherbe, J.M.: 2002, Vertical structure of sunspots from THEMIS observations. Astron. Astrophys. 381, 290. DOI . ADS .
Faurobert, M., Aime, C., Périni, C., Uitenbroek, H., Grec, C., Arnaud, J., Ricort, G.: 2009, Direct measurement of the formation height difference of the 630 nm Fe i solar lines. Astron. Astrophys. 507, L29. DOI . ADS .
Felipe, T., Collados, M., Khomenko, L., Kuckein, C., Asensio Ramos, A., Balthasar, H., Berkefeld, T., Denker, C., Feller, A., Franz, M., Hofmann, A., Joshi, J., Kiess, C., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Three-dimensional structure of a sunspot light bridge. Astron. Astrophys. 596, A59. DOI . ADS .
Franz, M., Schlichenmaier, R.: 2013, The velocity field of sunspot penumbrae, II: Return flow and magnetic fields of opposite polarity. Astron. Astrophys. 550, A97. DOI . ADS .
Franz, M., Collados, M., Bethge, C., Schlichenmaier, R., Borrero, J.M., Schmidt, W., Lagg, A., Solanki, S.K., Berkefeld, T., Kiess, C., Rezaei, R., Schmidt, D., Sigwarth, M., Soltau, D., Volkmer, R., von der Luhe, O., Waldmann, T., Orozco, D., Pastor Yabar, A., Denker, C., Balthasar, H., Staude, J., Hofmann, A., Strassmeier, K., Feller, A., Nicklas, H., Kneer, F., Sobotka, M.: 2016, Magnetic fields of opposite polarity in sunspot penumbrae. Astron. Astrophys. 596, A4. DOI . ADS .
Freytag, B., Steffen, M., Dorch, B.: 2002, Spots on the surface of Betelgeuse – results from the new 3D stellar convection models. Astron. Nachr. 323, 213. DOI . ADS .
Frutiger, C., Solanki, S.K., Fligge, M., Bruls, J.H.M.J.: 2000, Properties of the solar granulation obtained from the inversion of low spatial resolution spectra. Astron. Astrophys. 358, 1109. ADS .
Gelly, B.F.: 2007, THEMIS Instrumentation and strategy for the future. In: Heinzel, P., Dorotovič, K.N., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astron. Soc. Pacific Conf. Ser. 368, 593. ADS .
Grigoryev, V.M., Grigor’ev, V.M., Kobanov, N.I., Osak, B.F., Selivanov, V.L., Stepanov, V.E.: 1985, The vector magnetograph of the Sayan Solar Observatory. In: Hagyard, M.J. (ed.) Measurements of Solar Magnetic Vector Fields, NASA Conf. Publ. 2374, 231. ADS .
Hagyard, M.J., Teuber, D., West, E.A., Tandberg-Hanssen, E., Henze, W., Beckers, J.M., Bruner, M., Hyder, C.L., Woodgate, B.E.: 1983, Vertical gradients of sunspot magnetic fields. Solar Phys. 84, 13. DOI . ADS .
Hale, G.E.: 1908, On the probable existence of a magnetic field in sunspots. Astrophys. J. 28, 315. DOI . ADS .
Henze, W., Tandberg-Hanssen, E., Hagyard, M.J., Woodgate, B.E., Shine, R.A., Beckers, J.M., Bruner, M., Gurman, J.B., Hyder, C.L., West, E.A.: 1982, Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot. Solar Phys. 81, 231. DOI . ADS .
Hewagama, T., Deming, D., Jennings, D., Osherovich, V., Wiedemann, G., Zipoy, D., Mickey, D.L., Garcia, H.: 1993, Solar magnetic field studies using the 12 micron emission lines, II: Stokes profiles and vector field samples in sunspots. Astrophys. J. Suppl. 86, 313. DOI . ADS .
Hofmann, A., Rendtel, J.: 1989, Analysis and results of cooperative magnetographic measurements, III: Vertical gradients of the magnetic field in the sunspot photosphere. Astron. Nachr. 310, 61. DOI . ADS .
Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the Solar Optical Telescope onboard Hinode. Solar Phys. 249, 233. DOI . ADS .
Jaeggli, S.A., Lin, H., Mickey, D.L., Kuhn, J.R., Hegwer, S.L., Rimmele, T.R., Penn, M.J.: 2010, FIRS: a new instrument for photospheric and chromospheric studies at the DST. Mem. Soc. Astron. Ital. 81, 763. ADS .
Jaeggli, S.A., Lin, H., Uitenbroek, H., Rempel, M.: 2012, Comparison of multi-height observations with a 3D MHD sunspot model. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting: Exploring the Active Sun, Astron. Soc. Pacific Conf. Ser. 456, 67. ADS .
Jefferies, J., Lites, B.W., Skumnaich, A.: 1989, Transfer of line radiation in a megnetic field. Astrophys. J. 343, 920. DOI . ADS .
Joshi, J., Lagg, A., Solanki, S.K., Feller, A., Collados, D., Orozco Suárez, M., Schlichenmaier, R., Franz, M., Balthasar, H., Denker, C., Berkefeld, T., Hofmann, A., Kiess, C., Nicklas, H., Pastor Yabar, A., Rezaei, R., Schmidt, D., Schmidt, W., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Upper chromospheric magnetic field of a sunspot penumbra: observations of fine structure. Astron. Astrophys. 596, A8. DOI . ADS .
Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K.: 2017a, Three-dimensional magnetic structure of a sunspot: Comparison of the photosphere and upper chromosphere. Astron. Astrophys. 604, A98. DOI . ADS .
Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K., Tiwari, S.K.: 2017b, Vertical magnetic field gradient in the photosphereric layers of sunspots. Astron. Astrophys. 599, A35. DOI . ADS .
Kollatschny, W., Stellmacher, G., Wiehr, E., Falipou, M.A.: 1980, The infrered Ca+ lines in sunspot umbrae. Astron. Astrophys. 86, 245. ADS .
Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) Mission: An overview. Solar Phys. 243, 3. DOI . ADS .
Kupka, F.: 2009, Turbulent convection and numerical simulations in solar and stellar astrophysics. In: Hillebrandt, W., Kupka, F. (eds.) Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, 756, Springer, Berlin, 49. ADS .
Lagg, A., Woch, J., Krupp, N., Solanki, S.K.: 2004, Retrieval of the full magnetic vector with the He i multiplet at 1083 nm. Maps of an emerging flux region. Astron. Astrophys. 414, 1109. DOI . ADS .
Liu, Y., Wang, J., Yan, Y., Ai, G.: 1996, Gradients of the line-of-sight magnetic fields in active region NOAA 6659. Solar Phys. 169, 79. DOI . ADS .
Maltby, P., Averett, E.H., Carlsson, M., Kjeldset-Moe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284. DOI . ADS .
Mathew, S.K., Lagg, A., Solanki, S.K., Collados, M., Borrero, J.M., Berdyugina, S., Krupp, N., Woch, J., Frutiger, C.: 2003, Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles. Astron. Astrophys. 410, 695. DOI . ADS .
Mathew, S.K., Solanki, S.K., Lagg, A., Collados, M., Borrero, J.M., Berdyugina, S.: 2004, Thermal-magnetic in a sunspot and a map of its Wilson depression. Astron. Astrophys. 422, 693. DOI . ADS .
Moran, T., Deming, D., Jennings, D.E., McCabe, G.: 2000, Solar magnetic field studies using the 12 micron emission lines, III: Simultaneous measurements at 12 and 1.6 microns. Astrophys. J. 553, 1035. DOI . ADS .
Muglach, K., Solanki, S.K., Livingston, W.C.: 1994, Preliminary properties of pores derived from 1.56 micron lines. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institutes (ASI) Series C 433, 127. ADS .
Orozco Suárez, D., Lagg, A., Solanki, S.K.: 2005, Photospheric and chromospheric magnetic structure of a sunspot. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 59. ADS .
Osherovich, V.A.: 1984, A note on the values of the vertical gradient of the magnetic field in the return flux sunspot model. Solar Phys. 90, 31. DOI . ADS .
Osherovich, V.A., Flaa, T.: 1983, Sunspot models with twisted magnetic field. Solar Phys. 88, 109. DOI . ADS .
Osherovich, V.A., Garcia, H.A.: 1989, The relationship of sunspot magnetic fields to umbral sizes in return flux theory. Astrophys. J. 336, 468. DOI . ADS .
Pahlke, K.D., Wiehr, E.: 1990, Magnetic field, relative Dopppler shift and temperature for an inhomogeneous model of sunspot umbrae. Astron. Astrophys. 228, 246. ADS .
Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. 440, L109. DOI . ADS .
Pierce, A.K.: 1964, The McMath solar telescope of Kitt Peak National Observatory. Appl. Opt. 3, 1337. DOI . ADS .
Puschmann, K.G., Ruiz Cobo, B., Martínez Pillet, V.: 2010, A geometrical height scale for sunspot penumbrae. Astrophys. J. 720, 1417. DOI . ADS .
Rempel, M.: 2011a, Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5. DOI . ADS .
Rempel, M.: 2011b, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15. DOI . ADS .
Rempel, M.: 2011c, Three-D numerical MHD modeling of sunspots with radiation transport. In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Starspots, IAU Symp. 273, 8. DOI . ADS .
Rempel, M.: 2012, Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62. DOI . ADS .
Rüedi, I., Solanki, S.K., Livingston, W.C.: 1995, Infrared lines as probes of solar magnetic features X. He i 10830 Å as a diagnostic of chromospheric magnetic fields. Astron. Astrophys. 293, 252. ADS .
Ruiz Cobo, B., Asensio Ramos, A.: 2013, Returning magnetic flux in sunspot penumbrae. Astron. Astrophys. 549, L4. DOI . ADS .
Ruiz Cobo, B., del Toro Iniesta, J.C.: 1992, Inversion of Stokes profiles. Astrophys. J. 398, 375. DOI . ADS .
Sánchez Cuberes, M., Puschmann, K.G., Wiehr, E.: 2005, Spectropolarimetry of a sunspot at disk centre. Astron. Astrophys. 440, 345. DOI . ADS .
Schad, T.A., Penn, M.J., Lin, H., Tritschler, A.: 2015, Vector magnetic field maps of a sunspot and its superpenumbral fine-structure. Solar Phys. 290, 1607. DOI . ADS .
Scharmer, G.B., Bjelskjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish Solar Telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Proc. SPIE 4853, 341. DOI . ADS .
Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello González, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI . ADS .
Seehafer, N.: 1990, Electric ccurrent helicity in the solar atmosphere. Solar Phys. 125, 219. DOI . ADS .
Socas-Navarro, H.: 2005, The three-dimensional structure of a sunspot magnetic field. Astrophys. J. 631, L167. DOI . ADS .
Solanki, S.K., Schmidt, H.U.: 1993, Are sunspot penumbrae deep or shallow? Astron. Astrophys. 267, 287. ADS .
Solanki, S.K., Walther, U., Livingston, W.: 1993, Infrared lines as probes of solar magnetic features VI. The thermal-magnetic relation and Wilson depression of a simple sunspot. Astron. Astrophys. 277, 639. ADS .
Solanki, S.K.: 2003, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153. DOI . ADS .
Stellmacher, G., Wiehr, E.: 1975, The deep layers of sunspot umbrae. Astron. Astrophys. 45, 69. ADS .
Stupishin, A.G., Kaltman, T.I., Bogod, V.M., Yasnov, L.V.: 2018, Modeling of solar atmosphere parameters above sunspots using RATAN-600 microwave observations. Solar Phys. 293, 13. DOI . ADS .
Sütterlin, P.: 1998, Properties of solar pores. Astron. Astrophys. 333, 305. ADS .
Tiwari, S.K., van Noort, M., Solanki, S.K., Lagg, A.: 2015, Depth dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter. Astron. Astrophys. 583, A119. DOI . ADS .
Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27. DOI . ADS .
Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI . ADS .
Verma, M., Denker, C., Balthasar, C., Kuckein, H., Rezaei, R., Sobotka, M., Deng, N., Wang, H., Tritschler, A., Collados, M., Diercke, A., González Manrique, S.J.: 2018, High-resolution imaging and near-infrared spectroscopy of penumbral decay. Astron. Astrophys. 614, A2. DOI . ADS .
Vernazza, J.E., Avrett, E.H., Loeser, R.: 1976, Structure of the solar chromosphere, II: The underlying photosphere and temperature-minimum region. Astrophys. J. Suppl. 30, 1. DOI . ADS .
Vincent, A., Scott, P., Trampedach, R.: 2013, Light bosons and photspheric solutions to the solar abundance problem. Mon. Not. Roy. Astron. Soc. 432, 3332. DOI . ADS .
von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower Telescope on Tenerife. New Astron. Rev. 42, 493. DOI . ADS .
Westendorp Plaza, C., del Toro Iniesta, J.C., Ruiz Cobo, B., Martínez Pillet, V., Lites, B.W., Skumanich, A.: 2001, Optical tomography of a sunspot, II: Vector magnetic field and temeprature stratification. Astrophys. J. 547, 1130. DOI . ADS .
White, S.M.: 2005, Radio measurements of coronal magnetic fileds. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 10. ADS .
Wittmann, A.: 1974, Computation and observation of Zeeman multiplet polarization in Fraunhofer lines, III: Magnetic field structure of spot Mt. Wilson 18488. Solar Phys. 36, 29. DOI . ADS .
Woodgate, B.E., Tandberg-Hanssen, E.A., Bruner, E.C., Beckers, J.M., Brandt, J.C., Henze, W., Hyder, C.L., Kalet, M.W., Kenny, P.J., Knox, E.D., Michalitsianos, A.G., Rehse, R., Shine, R.A., Tinsley, H.D.: 1980, The ultraviolet spectrometer and polarimeter on the Solar Maximum Mission. Solar Phys. 65, 73. DOI . ADS .
Zhang, H., Bao, S., Kuzanyan, K.M.: 2002, Twist of magnetic fields in solar active regions. Astron. Rep. 46, 424. DOI . ADS .
Acknowledgements
I am deeply indebted to Dr. Véronique Bommier for many discussions and comments on the topic. I also thank her and Prof. Carsten Denker for carefully reading the manuscript. Dr. Matthias Steffen provided me with a model atmosphere and Dr. Matthias Rempel with a cut through one of his numerical simulations. My thanks go also to Dr. Morten Franz and Dr. Sanjiv Tiwari for the permission to use their figures (Figure 10 and Figure 2). The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max-Planck-Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Disclosure of Potential Conflicts of Interest
The author declares that he has no conflicts of interest.
Rights and permissions
About this article
Cite this article
Balthasar, H. The Problem of the Height Dependence of Magnetic Fields in Sunspots. Sol Phys 293, 120 (2018). https://doi.org/10.1007/s11207-018-1338-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-018-1338-x