Skip to main content
Log in

Determination of the Coronal and Interplanetary Magnetic Field Strength and Radial Profiles from Large-Scale Photospheric Magnetic Fields

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We propose a new model for the magnetic field at different distances from the Sun during different phases of the solar cycle. The model depends on the observed large-scale non-polar (\({\pm}\, 55^{\circ }\)) photospheric magnetic field and on the magnetic field measured at polar regions from \(55^{\circ }\) N to \(90^{\circ }\) N and from \(55^{\circ }\) S to \(90^{\circ }\) S, which are the visible manifestations of cyclic changes in the toroidal and poloidal components of the global magnetic field of the Sun. The modeled magnetic field is determined as the superposition of the non-polar and polar photospheric magnetic field and considers cycle variations. The agreement between the model predictions and magnetic fields derived from direct in situ measurements at different distances from the Sun, obtained with different methods and at different solar activity phases, is quite satisfactory. From a comparison of the magnetic fields as observed and calculated from the model at 1 AU, we conclude that the model magnetic field variations adequately explain the main features of the interplanetary magnetic field (IMF) radial, \(B_{\mathrm{x}}\), component cycle evolution at Earth’s orbit. The modeled magnetic field averaged over a Carrington rotation (CR) correlates with the IMF \(B_{\mathrm{x}}\) component also averaged over a CR at Earth’s orbit with a coefficient of 0.691, while for seven CR-averaged data, the correlation reaches 0.81. The radial profiles of the modeled magnetic field are compared with those of already existing models. In contrast to existing models, ours provides realistic magnetic-field radial distributions over a wide range of heliospheric distances at different cycle phases, taking into account the cycle variations of the solar toroidal and poloidal magnetic fields. The model is a good approximation of the cycle behavior of the magnetic field in the heliosphere. In addition, the decrease in the non-polar and polar photospheric magnetic fields is shown. Furthermore, the magnetic field during solar cycle maxima and minima decreased from Cycle 21 to Cycle 24. This implies that both the toroidal and poloidal components, and therefore the solar global magnetic field, decreased from Cycle 21 to Cycle 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Akhmedov, S.B., Gelfreikh, G.B., Bogod, V.M., Korzhavin, A.N.: 1982, The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission. Solar Phys. 79, 41. DOI .

    Article  ADS  Google Scholar 

  • Balogh, A., Smith, E.J., Tsurutani, B.T., Southwood, D.J., Forsyth, R.J., Horbury, T.S.: 1995, The heliospheric magnetic field over the South polar region of the Sun. Science 268, 1007. DOI .

    Article  ADS  Google Scholar 

  • Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, An analytical solar magnetic field model. Astron. Astrophys. 337, 940.

    ADS  Google Scholar 

  • Behannon, K.W.: 1976, Mariner 10 interplanetary magnetic field results. In: Williams, D.J. (ed.) Physics of Solar Planetary Environments, Proc. International Symp. on Solar—Terrestrial Physics 1, Am. Geophys. Union, Washington, 332.

    Google Scholar 

  • Bemporad, A., Mancuso, S.: 2010, First complete determination of plasma physical parameters across a coronal mass ejection-driven shock. Astrophys. J. 720, 130. DOI .

    Article  ADS  Google Scholar 

  • Bemporad, A., Susino, R., Frassati, F., Fineschi, S.: 2016, Measuring coronal magnetic field with remote sensing observations of shock waves. Front. Astron. Space Sci. 3, 17. DOI .

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2012, Formation of coronal mass ejections at different phases of solar activity. Geomagn. Aeron. 52, 1005. DOI .

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2014, Influence of the solar global magnetic-field structure evolution on CMEs. Solar Phys. 289, 4209. DOI .

    Article  ADS  Google Scholar 

  • Bilenko, I.A., Tavastsherna, K.S.: 2016, Coronal hole and solar global magnetic field evolution in 1976 – 2012. Solar Phys. 291, 2329. DOI .

    Article  ADS  Google Scholar 

  • Bogod, V.M., Stupishin, A.G., Yasnov, L.V.: 2012, On magnetic fields of active regions at coronal heights. Solar Phys. 276, 61. DOI .

    Article  ADS  Google Scholar 

  • Bogod, V.M., Yasnov, L.V.: 2008, Vertical structure of the magnetic field in active regions of the Sun at coronal heights. Cosm. Res. 46, 309. DOI .

    Article  ADS  Google Scholar 

  • Bogod, V.M., Yasnov, L.V.: 2016, Determination of the structure of the coronal magnetic field using microwave polarization measurements. Solar Phys. 291, 3317. DOI .

    Article  ADS  Google Scholar 

  • Brosius, J.W., White, S.M.: 2006, Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophys. J. 641, L69. DOI .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Lee, J., Gary, D.E., Moon, Y.-J., Park, Y.D.: 2007, Magnetic field strength in the solar corona from type II band splitting. Astrophys. J. 665, 799. DOI .

    Article  ADS  Google Scholar 

  • Dulk, G.A., McLean, D.J.: 1978, Coronal magnetic fields. Solar Phys. 57, 279. DOI .

    Article  ADS  Google Scholar 

  • Duvall, T.L.J., Wilcox, J.M., Svalgaard, L., Scherrer, P.H., McIntosh, P.S.: 1977, Comparison of Ha synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 55, 63. DOI .

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Balogh, A., Horbury, T.S., Erdoes, G., Smith, E.J., Burton, M.E.: 1996, The heliospheric magnetic field at solar minimum: ULYSSES observations from pole to pole. Astron. Astrophys. 316, 287.

    ADS  Google Scholar 

  • Gelfreikh, G.B., Peterova, N.G., Riabov, B.I.: 1987, Measurements of magnetic fields in solar corona as based on the radio observations of the inversion of polarization of local sources at microwaves. Solar Phys. 108, 89. DOI .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Bagenal, F.: 1995, Large-scale magnetic field and density distribution in the solar minimum corona. J. Geophys. Res. 100, 19865. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S.: 2011, The strength and radial profile of the coronal magnetic field from the standoff distance of a coronal mass ejection-driven shock. Astrophys. J. Lett. 736, L17. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Nitta, N., Akiyama, S., Mäkelä, P., Yashiro, S.: 2012, Coronal magnetic field measurement from EUV images made by the Solar Dynamics Observatory. Astrophys. J. 744, 72. DOI .

    Article  ADS  Google Scholar 

  • Hariharan, K., Ramesh, R., Kishore, P., Kathiravan, C., Gopalswamy, N.: 2014, An estimate of the coronal magnetic field near a solar coronal mass ejection from low-frequency radio observations. Astrophys. J. 795, 14. DOI .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Scherrer, P.H.: 1986, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976 – 1985. Solar Phys. 105, 205. DOI .

    Article  ADS  Google Scholar 

  • Ingleby, L.D., Spangler, S.R., Whiting, C.A.: 2007, Probing the large-scale plasma structure of the solar corona with Faraday rotation measurements. Astrophys. J. 668, 520. DOI .

    Article  ADS  Google Scholar 

  • Kaltman, T.I., Bogod, V.M., Stupishin, A.G., Yasnov, L.V.: 2012, The altitude structure of the coronal magnetic field of AR 10933. Astron. Rep. 56, 790. DOI .

    Article  ADS  Google Scholar 

  • Kim, R.-S., Gopalswamy, N., Moon, Y.-J., Cho, K.S., Yashiro, S.: 2012, Magnetic field strength in the upper solar corona using white-light shock structures surrounding coronal mass ejections. Astrophys. J. 746, 118. DOI .

    Article  ADS  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104. DOI .

    Article  ADS  Google Scholar 

  • Kumari, A., Ramesh, R., Kathiravan, C., Wang, T.J.: 2017, Addendum to: strength of the solar coronal magnetic field—a comparison of independent estimates using contemporaneous radio and white-light observations. Solar Phys. 292, 177. DOI .

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI .

    Article  ADS  Google Scholar 

  • Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. 613, L177. DOI .

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. 541, L83. DOI .

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys. 292, 18. DOI .

    Article  ADS  Google Scholar 

  • Mancuso, S., Garzelli, M.V.: 2013a, Coronal magnetic field strength from type II radio emission: complementarity with Faraday rotation measurements. Astron. Astrophys. 560, L1. DOI .

    Article  ADS  Google Scholar 

  • Mancuso, S., Garzelli, M.V.: 2013b, Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations. Astron. Astrophys. 553, A100. DOI .

    Article  ADS  Google Scholar 

  • Mancuso, S., Spangler, S.R.: 2000, Faraday rotation and models for the plasma structure of the solar corona. Astrophys. J. 539, 480. DOI .

    Article  ADS  Google Scholar 

  • Mancuso, S., Raymond, J.C., Kohl, J., Ko, Y.-K., Uzzo, M., Wu, R.: 2003, Plasma properties above coronal active regions inferred from SOHO/UVCS and radio spectrograph observations. Astron. Astrophys. 400, 347. DOI .

    Article  ADS  Google Scholar 

  • Mann, G., Aurass, H., Klassen, A., Estel, C., Thompson, B.J.: 1999, Coronal transient waves and coronal shock waves. In: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, Proc. 8 SOHO Workshop, ESA SP-446, 477.

    Google Scholar 

  • Musmann, G., Neubauer, F.M., Lammers, E.: 1977, Radial variation of the interplanetary magnetic field between 0.3 AU and 1.0 AU. J. Geophys. 42, 591.

    Google Scholar 

  • Ness, N.F., Wilcox, J.M.: 1964, Solar origin of the interplanetary magnetic field. Phys. Rev. Lett. 13, 461. DOI .

    Article  ADS  Google Scholar 

  • Ness, N.F., Wilcox, J.M.: 1965, Sector structure of the quiet interplanetary magnetic field. Science 148, 1592. DOI .

    Article  ADS  Google Scholar 

  • Ness, N.F., Wilcox, J.M.: 1966, Extension of the photospheric magnetic field into interplanetary space. Astrophys. J. 143, 23. DOI .

    Article  ADS  Google Scholar 

  • Ord, S.M., Johnston, S., Sarkissian, J.: 2007, The magnetic field of the solar corona from pulsar observations. Solar Phys. 245, 109. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128, 664. DOI .

    Article  ADS  Google Scholar 

  • Pätzold, M., Bird, M.K., Volland, H., Levy, G.S., Siedel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91. DOI .

    Article  ADS  Google Scholar 

  • Plyusnina, L.A.: 1985, The relationship between the interplanetary magnetic field inhomogeneous structure and the distribution of large-scale magnetic fields in the photosphere (1969 – 1975). Solar Phys. 102, 191. DOI .

    Article  ADS  Google Scholar 

  • Poomvises, W., Gopalswamy, N., Yashiro, S., Kwon, R.-Y., Olmedo, O.: 2012, Determination of the heliospheric radial magnetic field from the standoff distance of a CME-driven shock observed by the STEREO spacecraft. Astrophys. J. 758, 118. DOI .

    Article  ADS  Google Scholar 

  • Raouafi, N.E., Riley, P., Gibson, S., Fineschi, S., Solanki, S.K.: 2016, Diagnostics of coronal magnetic fields through the Hanle effect in UV and IR lines. Front. Astron. Space Sci. 3, 20. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI .

    Article  ADS  Google Scholar 

  • Saito, K.: 1977, A study of the background corona near solar minimum. Solar Phys. 55, 121. DOI .

    Article  ADS  Google Scholar 

  • Sakurai, T., Spangler, S.R.: 1994, The study of coronal plasma structures and fluctuations with Faraday rotation measurements. Astrophys. J. 434, 773. DOI .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Wilcox, J.M.: 1972, The mean photospheric magnetic field from solar magnetograms: comparisons with the interplanetary magnetic field. Solar Phys. 22, 418. DOI .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Wilcox, J.M., Kotov, V.A., Severny, A.B., Howard, R.: 1977, The mean magnetic field of the Sun—method of observation and relation to the interplanetary magnetic field. Solar Phys. 52, 3.

    Article  ADS  Google Scholar 

  • Schmidt, J.M., Cairns, I.H., Gopalswamy, N., Yashiro, S.: 2016, Coronal magnetic field profiles from shock-CME standoff distances. J. Geophys. Res. 121, 9299. DOI .

    Article  Google Scholar 

  • Severny, A.B., Wilcox, J.M., Scherrer, P.H., Colburn, D.S.: 1970, Comparison of the mean photospheric magnetic field and the interplanetary magnetic filed. Solar Phys. 15, 3. DOI .

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A.: 1995, Ulysses observations of the radial magnetic field. Geophys. Res. Lett. 22, 3317. DOI .

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2005, The strength and structure of the coronal magnetic field. Solar Phys. 121, 189. DOI .

    Google Scholar 

  • Villante, U., Mariani, F., Cirone, R.: 1982, Helios 1 + Helios 2: a summary of IMF observations performed in the inner solar system during 1975 – 1981. Nuovo Cimento C 5, 497. DOI .

    Article  ADS  Google Scholar 

  • Virtanen, I., Mursula, K.: 2016, Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina. Astron. Astrophys. 591, A78. DOI .

    Article  ADS  Google Scholar 

  • Virtanen, I., Mursula, K.: 2017, Photospheric and coronal magnetic fields in six magnetographs. II. Harmonic scaling of field intensities. Astron. Astrophys. 604, A7. DOI .

    Article  ADS  Google Scholar 

  • Vrs̆nak, B., Magdalenić, J., Aurass, H., Mann, G.: 2002, Coronal and interplanetary magnetic fields inferred from band-splitting of type II bursts. In: Solar Variability: From Core to Outer Frontiers, The 10th. European Sol. Phys. Meeting, ESA SP-506 1, 409.

    Google Scholar 

  • Warmuth, A., Mann, G.: 2005, A model of the Alfvén speed in the solar corona. Astron. Astrophys. 435, 1123. DOI .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87. DOI .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Petrie, G.J.D., Riley, P.: 2017, Coronal magnetic field models. Space Sci. Rev. 210, 249. DOI .

    Article  ADS  Google Scholar 

  • Wilcox, J.M.: 1968, The interplanetary magnetic field. Solar origin and terrestrial effects. Space Sci. Rev. 8, 258. DOI .

    Article  ADS  Google Scholar 

  • Wilcox, J.M., Ness, N.F.: 1967, Solar source of the interplanetary sector structure. Solar Phys. 1, 437. DOI .

    Article  ADS  Google Scholar 

  • Xiong, M., Davies, J.A., Feng, X., Owens, M.J.: 2013, Using coordinated observations in polarized white light and Faraday rotation to probe the spatial position and magnetic field of an interplanetary sheath. Astrophys. J. 777, 32. DOI .

    Article  ADS  Google Scholar 

  • You, X.P., Coles, W.A., Hobbs, G.B., Manchester, R.N.: 2012, Measurement of the electron density and magnetic field of the solar wind using millisecond pulsars. Mon. Not. Roy. Astron. Soc. 422, 1160. DOI .

    Article  ADS  Google Scholar 

  • Zharkov, S.I., Gavryuseva, E.V., Zharkova, V.V.: 2007, The latitudinal distribution of sunspot areas and magnetic fields and their correlation with the background solar magnetic field in the cycle 23. Adv. Space Res. 39, 1753. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author expresses her appreciation to the anonymous referee for a very thorough and helpful revision of the paper.

Wilcox Solar Observatory data used in this study were obtained via the web site http://wso.stanford.edu at 2018:03:11 01:13:34 PST courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA.

Data on the IMF were obtained from multi-source OMNI 2 database via the web site https://omniweb.gsfc.nasa.gov/ow.html . The author thanks the GSFC/SPDF and OMNIWeb for the opportunity to use this data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Bilenko.

Ethics declarations

Disclosure of Potential Conflict of Interest

The author declares to have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilenko, I.A. Determination of the Coronal and Interplanetary Magnetic Field Strength and Radial Profiles from Large-Scale Photospheric Magnetic Fields. Sol Phys 293, 106 (2018). https://doi.org/10.1007/s11207-018-1324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1324-3

Keywords

Navigation