Computation of Relative Magnetic Helicity in Spherical Coordinates

Abstract

Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Adams, J.: 1989, MUDPACK: multigrid fortran software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput. 34, 113. DOI .

    MATH  Google Scholar 

  2. Amari, T., Aly, J.-J., Canou, A., Mikic, Z.: 2013, Reconstruction of the solar coronal magnetic field in spherical geometry. Astron. Astrophys. 553, A43. DOI . ADS .

    Article  Google Scholar 

  3. Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI . ADS .

    ADS  MathSciNet  Article  Google Scholar 

  4. Bobra, M.G., van Ballegooijen, A.A., DeLuca, E.E.: 2008, Modeling nonpotential magnetic fields in solar active regions. Astrophys. J. 672, 1209. DOI . ADS .

    ADS  Article  Google Scholar 

  5. Brandenburg, A., Subramanian, K.: 2005, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1. DOI . ADS .

    ADS  MathSciNet  Article  Google Scholar 

  6. Brown, M., Canfield, R., Field, G., Kulsrud, R., Pevtsov, A., Rosner, R., Seehafer, N.: 1999, Magnetic Helicity in Space and Laboratory Plasmas: Editorial Summary 111, AGU, Washington, 301. DOI . ADS .

    Google Scholar 

  7. Dasgupta, B., Janaki, M.S., Bhattacharyya, R., Dasgupta, P., Watanabe, T., Sato, T.: 2002, Spheromak as a relaxed state with minimum dissipation. Phys. Rev. E 65(4), 046405. DOI . ADS .

    ADS  Article  Google Scholar 

  8. DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944. DOI . ADS .

    ADS  Article  Google Scholar 

  9. Fan, Y.: 2010, On the eruption of coronal flux ropes. Astrophys. J. 719, 728. DOI . ADS .

    ADS  Article  Google Scholar 

  10. Fan, Y.: 2016, Modeling the initiation of the 2006 December 13 coronal mass ejection in AR 10930: the structure and dynamics of the erupting flux rope. Astrophys. J. 824, 93. DOI . ADS .

    ADS  Article  Google Scholar 

  11. Finn, J.M., Antonsen, T.M.: 1985, Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Control. Fusion 9, 111.

    Google Scholar 

  12. Gilchrist, S.A., Wheatland, M.S.: 2014, Nonlinear force-free modeling of the corona in spherical coordinates. Solar Phys. 289, 1153. DOI . ADS .

    ADS  Article  Google Scholar 

  13. Ji, H., Prager, S.C., Sarff, J.S.: 1995, Conservation of magnetic helicity during plasma relaxation. Phys. Rev. Lett. 74, 2945. DOI . ADS .

    ADS  Article  Google Scholar 

  14. Karpen, J.T., DeVore, C.R., Antiochos, S.K., Pariat, E.: 2017, Reconnection-driven coronal-hole jets with gravity and solar wind. Astrophys. J. 834, 62. DOI . ADS .

    ADS  Article  Google Scholar 

  15. Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129. DOI . ADS .

    ADS  Article  Google Scholar 

  16. Low, B.C., Lou, Y.Q.: 1990, Modeling solar force-free magnetic fields. Astrophys. J. 352, 343. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. DOI . ADS .

    ADS  Article  Google Scholar 

  18. Moraitis, K., Tziotziou, K., Georgoulis, M.K., Archontis, V.: 2014, Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Solar Phys. 289, 4453. DOI . ADS .

    ADS  Article  Google Scholar 

  19. Pariat, E., Valori, G., Démoulin, P., Dalmasse, K.: 2015, Testing magnetic helicity conservation in a solar-like active event. Astron. Astrophys. 580, A128. DOI . ADS .

    ADS  Article  Google Scholar 

  20. Pariat, E., Leake, J.E., Valori, G., Linton, M.G., Zuccarello, F.P., Dalmasse, K.: 2017, Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125. DOI . ADS .

    ADS  Article  Google Scholar 

  21. Polito, V., Del Zanna, G., Valori, G., Pariat, E., Mason, H.E., Dudík, J., Janvier, M.: 2017, Analysis and modelling of recurrent solar flares observed with Hinode/EIS on March 9, 2012. Astron. Astrophys. 601, A39. DOI . ADS .

    Article  Google Scholar 

  22. Rust, D.M.: 1994, Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241. DOI . ADS .

    ADS  Article  Google Scholar 

  23. Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., Werner, E., DeLuca, E.E.: 2015, The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys. J. 810, 96. DOI . ADS .

    ADS  Article  Google Scholar 

  24. Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., DeLuca, E.E.: 2016, The relation between solar eruption topologies and observed flare features. II. Dynamical evolution. Astrophys. J. 817, 43. DOI . ADS .

    ADS  Article  Google Scholar 

  25. Schrijver, C.J., De Rosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields part I: a quantitative comparison of methods. Solar Phys. 235, 161. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Swarztrauber, P.N., Sweet, R.A.: 1979, Algorithm 541: efficient Fortran subprograms for the solution of separable elliptic partial differential equations. ACM Trans. Math. Softw. 5, 352. DOI .

    Article  MATH  Google Scholar 

  27. Taylor, J.B.: 1974, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139. DOI . ADS .

    ADS  Article  Google Scholar 

  28. Thalmann, J.K., Inhester, B., Wiegelmann, T.: 2011, Estimating the relative helicity of coronal magnetic fields. Solar Phys. 272, 243. DOI . ADS .

    ADS  Article  Google Scholar 

  29. Tziotziou, K., Moraitis, K., Georgoulis, M.K., Archontis, V.: 2014, Validation of the magnetic energy vs. helicity scaling in solar magnetic structures. Astron. Astrophys. Lett. 570, L1. DOI . ADS .

    ADS  Article  Google Scholar 

  30. Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347. DOI . ADS .

    ADS  Article  Google Scholar 

  31. Valori, G., Démoulin, P., Pariat, E., Masson, S.: 2013, Accuracy of magnetic energy computations. Astron. Astrophys. 553, A38. DOI . ADS .

    ADS  Article  Google Scholar 

  32. Valori, G., Pariat, E., Anfinogentov, S., Chen, F., Georgoulis, M.K., Guo, Y., Liu, Y., Moraitis, K., Thalmann, J.K., Yang, S.: 2016, Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: finite volume methods. Space Sci. Rev. 201, 147. DOI . ADS .

    ADS  Article  Google Scholar 

  33. van Ballegooijen, A.A.: 2004, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519. DOI . ADS .

    ADS  Article  Google Scholar 

  34. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150. DOI . ADS .

    ADS  Article  Google Scholar 

  35. Woltjer, L.: 1958, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. 44, 489. DOI . ADS .

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. Yang, S., Büchner, J., Santos, J.C., Zhang, H.: 2013, Evolution of relative magnetic helicity: method of computation and its application to a simulated solar corona above an active region. Solar Phys. 283, 369. DOI . ADS .

    ADS  Article  Google Scholar 

  37. Yeates, A.R., Hornig, G.: 2016, The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98. DOI . ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

E. Pariat and K. Moraitis acknowledge the support of the French Agence Nationale pour la Recherche through the HELISOL project, contract no. ANR-15-CE31-0001. G. Valori acknowledges the support of the Leverhulme Trust Research Project Grant 2014-051. A. Savcheva was funded by NASA HSR grant NNX16AH87G.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kostas Moraitis.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moraitis, K., Pariat, É., Savcheva, A. et al. Computation of Relative Magnetic Helicity in Spherical Coordinates. Sol Phys 293, 92 (2018). https://doi.org/10.1007/s11207-018-1314-5

Download citation

Keywords

  • Magnetic fields, Models
  • Helicity, Magnetic
  • Magnetic fields, Corona