Advertisement

Solar Physics

, 293:74 | Cite as

Influence of the Atmospheric Model on Hanle Diagnostics

  • Ryohko Ishikawa
  • Han Uitenbroek
  • Motoshi Goto
  • Yusuke Iida
  • Saku Tsuneta
Article

Abstract

We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-\(\upalpha\) line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error (e.g., \({\sim}\, 40~\mbox{G}\) instead of 50 G in field strength and \({\sim}\,100^{\circ}\) instead of \(90^{\circ}\) in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known (e.g., the inversion error is much larger than 40% of the field strength; \({>}\,70~\mbox{G}\) instead of \(50~\mbox{G}\)). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.

Keywords

Polarization, magnetic Magnetic fields, chromosphere 

Notes

Acknowledgements

This work was initiated while Han Uitenbroek visited NAOJ as a visiting professor. We are grateful to J. Trujillo Bueno, J. Štěpán, L. Belluzzi, A. Asensio Ramos, R. Manso Sainz, and B. De Pontieu. This work was inspired by our exciting discussions with them. We also acknowledge other team members of the CLASP sounding rocket experiment. This work was supported by JSPS KAKENHI Grant No. 25887051.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Andretta, V., Jones, H.P.: 1997, On the role of the solar corona and transition region in the excitation of the spectrum of neutral helium. Astrophys. J. 489, 375. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Anusha, L.S., Nagendra, K.N., Stenflo, J.O., Bianda, M., Sampoorna, M., Frisch, H., Holzreuter, R., Ramelli, R.: 2010, Generalization of the last scattering approximation for the second solar spectrum modeling: the Ca I 4227 Å line as a case study. Astrophys. J. 718, 988. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Asensio Ramos, A., Trujillo Bueno, J., Landi Degl’Innocenti, E.: 2008, Advanced forward modeling and inversion of Stokes profiles resulting from the joint action of the Hanle and Zeeman effects. Astrophys. J. 683, 542. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Belluzzi, L., Trujillo Bueno, J.: 2012, The polarization of the solar Mg II h and k lines. Astrophys. J. Lett. 750, L11. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Belluzzi, L., Trujillo Bueno, J., Štěpán, J.: 2012, The scattering polarization of the Ly\(\upalpha\) lines of H I and He II taking into account partial frequency redistribution and J-state interference effects. Astrophys. J. Lett. 755, L2. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Casini, R., Landi Degl’Innocenti, E.: 2008, Astrophysical plasmas. In: Fujimoto, T., Iwamae, A. (eds.) Plasma Polarization Spectroscopy, Springer, Berlin, 247. DOI. ADS. CrossRefGoogle Scholar
  7. Centeno, R., Trujillo Bueno, J., Asensio Ramos, A.: 2010, On the magnetic field of off-limb spicules. Astrophys. J. 708, 1579. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Centeno, R., Trujillo Bueno, J., Uitenbroek, H., Collados, M.: 2008, The influence of coronal EUV irradiance on the emission in the He I 10830 Å and D3 multiplets. Astrophys. J. 677, 742. DOI. ADS. ADSCrossRefGoogle Scholar
  9. de la Cruz Rodríguez, J., Socas-Navarro, H.: 2011, Are solar chromospheric fibrils tracing the magnetic field? Astron. Astrophys. 527, L8. DOI. ADS. ADSCrossRefGoogle Scholar
  10. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III—Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Ishikawa, R., Asensio Ramos, A., Belluzzi, L., Manso Sainz, R., Štěpán, J., Trujillo Bueno, J., Goto, M., Tsuneta, S.: 2014a, On the inversion of the scattering polarization and the Hanle effect signals in the hydrogen Ly\(\upalpha\) line. Astrophys. J. 787, 159. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Ishikawa, R., Narukage, N., Kubo, M., Ishikawa, S., Kano, R., Tsuneta, S.: 2014b, Strategy for realizing high-precision VUV spectro-polarimeter. Solar Phys. 289, 4727. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Ishikawa, R., Trujillo Bueno, J., Uitenbroek, H., Kubo, M., Tsuneta, S., Goto, M., Kano, R., Narukage, N., Bando, T., Katsukawa, Y., Ishikawa, S., Giono, G., Suematsu, Y., Hara, H., Shimizu, T., Sakao, T., Winebarger, A., Kobayashi, K., Cirtain, J., Champey, P., Auchère, F., Štěpán, J., Belluzzi, L., Asensio Ramos, A., Manso Sainz, R., De Pontieu, B., Ichimoto, K., Carlsson, M., Casini, R.: 2017, Indication of the Hanle effect by comparing the scattering polarization observed by CLASP in the Ly\(\upalpha\) and Si III 120.65 nm lines. Astrophys. J. 841, 31. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Kano, R., Bando, T., Narukage, N., Ishikawa, R., Tsuneta, S., Katsukawa, Y., Kubo, M., Ishikawa, S.-n., Hara, H., Shimizu, T., Suematsu, Y., Ichimoto, K., Sakao, T., Goto, M., Kato, Y., Imada, S., Kobayashi, K., Holloway, T., Winebarger, A., Cirtain, J., De Pontieu, B., Casini, R., Trujillo Bueno, J., Štepán, J., Manso Sainz, R., Belluzzi, L., Asensio Ramos, A., Auchère, F., Carlsson, M.: 2012, Chromospheric Lyman-alpha spectro-polarimeter (CLASP). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Ser. 8443, 4. DOI. ADS. Google Scholar
  16. Kano, R., Trujillo Bueno, J., Winebarger, A., Auchère, F., Narukage, N., Ishikawa, R., Kobayashi, K., Bando, T., Katsukawa, Y., Kubo, M., Ishikawa, S., Giono, G., Hara, H., Suematsu, Y., Shimizu, T., Sakao, T., Tsuneta, S., Ichimoto, K., Goto, M., Belluzzi, L., Štěpán, J., Asensio Ramos, A., Manso Sainz, R., Champey, P., Cirtain, J., De Pontieu, B., Casini, R., Carlsson, M.: 2017, Discovery of scattering polarization in the hydrogen Ly\(\upalpha\) line of the solar disk radiation. Astrophys. J. Lett. 839, L10. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Kobayashi, K., Kano, R., Trujillo-Bueno, J., Asensio Ramos, A., Bando, T., Belluzzi, L., Carlsson, M., De Pontieu, R.C.B., Hara, H., Ichimoto, K., Ishikawa, R., Katsukawa, Y., Kubo, M., Manso Sainz, R., Narukage, N., Sakao, T., Stepan, J., Suematsu, Y., Tsuneta, S., Watanabe, H., Winebarger, A.: 2012, The Chromospheric Lyman-Alpha SpectroPolarimeter: CLASP. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, Astron. Soc. Pac. Conf. Ser. 456, 233. ADS. Google Scholar
  18. Kubo, M., Kano, R., Kobayashi, K., Bando, T., Narukage, N., Ishikawa, R., Tsuneta, S., Katsukawa, Y., Ishikawa, S., Suematsu, Y., Hara, H., Shimizu, T., Sakao, T., Ichimoto, K., Goto, M., Holloway, T., Winebarger, A., Cirtain, J., De Pontieu, B., Casini, R., Auchère, F., Trujillo Bueno, J., Manso Sainz, R., Belluzzi, L., Asensio Ramos, A., Štěpán, J., Carlsson, M.: 2014, A sounding rocket experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP). In: Nagendra, K.N., Stenflo, J.O., Qu, Q., Samooprna, M. (eds.) Solar Polarization 7, Astron. Soc. Pac. Conf. Ser. 489, 307. ADS. Google Scholar
  19. Lagg, A., Woch, J., Krupp, N., Solanki, S.K.: 2004, Retrieval of the full magnetic vector with the He I multiplet at 1083 nm. Maps of an emerging flux region. Astron. Astrophys. 414, 1109. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Landi Degl’Innocenti, E., Landolfi, M. (eds.): 2004, Polarization in Spectral Lines, Astrophy. Space Sci. Lib. 307. ADS. Google Scholar
  21. Leenaarts, J., Carlsson, M., Rouppe van der Voort, L.: 2015, On fibrils and field lines: the nature of H\(\upalpha\) fibrils in the solar chromosphere. Astrophys. J. 802, 136. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn., Freeman, San Francisco. ADS. Google Scholar
  24. Narukage, N., Auchère, F., Ishikawa, R., Kano, R., Tsuneta, S., Winebarger, A.R., Kobayashi, K.: 2015, Vacuum ultraviolet spectropolarimeter design for precise polarization measurements. Appl. Opt. 54, 2080. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Orozco Suárez, D., Asensio Ramos, A., Trujillo Bueno, J.: 2014, The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10 830 Å triplet. Astron. Astrophys. 566, A46. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Sampoorna, M., Trujillo Bueno, J., Landi Degl’Innocenti, E.: 2010, On the sensitivity of partial redistribution scattering polarization profiles to various atmospheric parameters. Astrophys. J. 722, 1269. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Smitha, H.N., Nagendra, K.N., Sampoorna, M., Stenflo, J.O.: 2011, Radiative transfer with J-state interference in a two-term atom. Partial frequency redistribution in the non-magnetic case. Astron. Astrophys. 535, A35. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Stenflo, J. (ed.): 1994, Solar magnetic fields: polarized radiation diagnostics, Astrophysics and Space Science Library 189. DOI. ADS. Google Scholar
  30. Štěpán, J., Trujillo Bueno, J.: 2011, Scattering polarization of hydrogen lines in weakly magnetized stellar atmospheres. I. Formulation and application to isothermal models. Astrophys. J. 732, 80. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Štěpán, J., Trujillo Bueno, J., Carlsson, M., Leenaarts, J.: 2012, The Hanle effect of Ly\(\upalpha\) in a magnetohydrodynamic model of the solar transition region. Astrophys. J. Lett. 758, L43. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Štěpán, J., Trujillo Bueno, J., Leenaarts, J., Carlsson, M.: 2015, Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly\(\upalpha\) line in a magnetohydrodynamic model of the chromosphere–corona transition region. Astrophys. J. 803, 65. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Supriya, H.D., Smitha, H.N., Nagendra, K.N., Stenflo, J.O., Bianda, M., Ramelli, R., Ravindra, B., Anusha, L.S.: 2014, Center-to-limb observations and modeling of the Ca I 4227 Å line. Astrophys. J. 793, 42. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Trujillo Bueno, J., Štěpán, J., Belluzzi, L.: 2012, The Ly\(\upalpha\) lines of H I and He II: a differential Hanle effect for exploring the magnetism of the solar transition region. Astrophys. J. Lett. 746, L9. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Trujillo Bueno, J., Štěpán, J., Casini, R.: 2011, The Hanle effect of the hydrogen Ly\(\upalpha\) line for probing the magnetism of the solar transition region. Astrophys. J. Lett. 738, L11. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J. 557, 389. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ryohko Ishikawa
    • 1
  • Han Uitenbroek
    • 2
  • Motoshi Goto
    • 3
  • Yusuke Iida
    • 4
  • Saku Tsuneta
    • 1
  1. 1.National Astronomical Observatory of JapanMitaka, TokyoJapan
  2. 2.National Solar ObservatoryBoulderUSA
  3. 3.National Institute for Fusion ScienceTokiJapan
  4. 4.Kwansei Gakuin UniversityHyogoJapan

Personalised recommendations