Solar Physics

, 293:73 | Cite as

Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections

  • Nada Al-Haddad
  • Teresa Nieves-Chinchilla
  • Neel P. Savani
  • Noé Lugaz
  • Ilia I. Roussev
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients


Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth’s magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad–Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular–cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take into consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes.


Coronal mass ejections (CMEs) Magnetic clouds Fitting techniques In situ measurements Solar wind Flux rope 



The authors would like to thank the referee for useful comments that helped improve this manuscript. We acknowledge the use of Wind data provided by the MFI and SWE teams at GSFC. This research was performed with funding from AGS-1433086, AGS-1433213, and AGS-1460179.

Disclosure of Potential Conflicts of Interests

The authors declare that they have no conflicts of interest.


  1. Al-Haddad, N., Roussev, I.I., Möstl, C., Jacobs, C., Lugaz, N., Poedts, S., Farrugia, C.J.: 2011, Astrophys. J. Lett. 738, 18. DOI. ADSCrossRefGoogle Scholar
  2. Al-Haddad, N., Nieves-Chinchilla, T., Möstl, C., Hidalgo, M.A., Marubashi, K., Savani, M.P., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Solar Phys. 284, 129. DOI. ADSCrossRefGoogle Scholar
  3. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Clover, J.M.: 2008, J. Geophys. Res. 113, A00A11. DOI. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F.: 1988, J. Geophys. Res. 93, 7217. DOI. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, J. Geophys. Res. 107, 1. DOI. Google Scholar
  6. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, J. Geophys. Res. 86. DOI.
  7. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., Davis, C.J., Eyles, C.J., Crothers, S.R., Brown, D.S.: 2009, Geophys. Res. Lett. 36, 02102. DOI. ADSCrossRefGoogle Scholar
  8. Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., Lazarus, A.J.: 1993, J. Geophys. Res. 98, 7621. DOI. ADSCrossRefGoogle Scholar
  9. Farrugia, C.J., Berdichevsky, D.B., Möstl, C., Galvin, A.B., Leitner, M., Popecki, M.A., Simunac, K.D.C., Opitz, A., Lavraud, B., Ogilvie, K.W., Veronig, A.M., Temmer, M., Luhmann, J.G., Sauvaud, J.A.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1254. DOI. ADSCrossRefGoogle Scholar
  10. Gold, T.: 1962, Space Sci. Rev. 1, 100. DOI. ADSCrossRefGoogle Scholar
  11. Gold, T., Hoyle, F.: 1960, Mon. Not. Roy. Astron. Soc. 120, 89. DOI. ADSCrossRefGoogle Scholar
  12. Goldstein, H.: 1983, NASA Conf. Publ. 228, 731. Google Scholar
  13. Gopalswamy, N.: 2016, Geosci. Lett. 3, 8. DOI. ADSCrossRefGoogle Scholar
  14. Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Astron. Astrophys. 509, 39. DOI. ADSCrossRefGoogle Scholar
  15. Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Geophys. Res. Lett. 29(13), 130000. DOI. CrossRefGoogle Scholar
  16. Hidalgo, M.A., Cid, C., Medina, J., Viñas, A.F.: 2000, Solar Phys. 194, 165. DOI. ADSCrossRefGoogle Scholar
  17. Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, J. Geophys. Res. 107, 1002. DOI. CrossRefGoogle Scholar
  18. Hu, Q., Sonnerup, B.U.Ö.: 2001, Geophys. Res. Lett. 28, 467. DOI. ADSCrossRefGoogle Scholar
  19. Hu, Q., Smith, C.W., Ness, N.F., Sonnerup, B.U.Ö.: 2004, J. Geophys. Res. 109, 3102. DOI. CrossRefGoogle Scholar
  20. Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Solar Phys. 273, 205. DOI. ADSCrossRefGoogle Scholar
  21. Jacobs, C., Roussev, I.I., Lugaz, N., Poedts, S.: 2009, Astrophys. J. Lett. 695, L171. DOI. ADSCrossRefGoogle Scholar
  22. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Solar Phys. 239, 393. DOI. ADSCrossRefGoogle Scholar
  23. Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Solar Phys. 254, 325. DOI. ADSCrossRefGoogle Scholar
  24. Klein, L.W., Burlaga, L.F.: 1982, J. Geophys. Res. 87, 613. DOI. ADSCrossRefGoogle Scholar
  25. Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Astrophys. J. 779, 129. DOI. ADSCrossRefGoogle Scholar
  26. Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, J. Geophys. Res. 95, 11957. DOI. ADSCrossRefGoogle Scholar
  27. Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M.: 1995, Space Sci. Rev. 71, 207. DOI. ADSCrossRefGoogle Scholar
  28. Lepping, R.P., Berdichevsky, D.B., Wu, C.C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, Ann. Geophys. 24, 215. DOI. ADSCrossRefGoogle Scholar
  29. Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Rème, H., Bosqued, J.M., Coutelier, J., Cotin, F., D’Uston, C., Wenzel, K.P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: 1995, Space Sci. Rev. 71, 125. DOI. ADSCrossRefGoogle Scholar
  30. Lugaz, N., Downs, C., Shibata, K., Roussev, I.I., Asai, A., Gombosi, T.I.: 2011, Astrophys. J. 738, 127. DOI. ADSCrossRefGoogle Scholar
  31. Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Astrophys. J. 683, 1192. DOI. ADSCrossRefGoogle Scholar
  32. Manchester, W.B., Gombosi, T.I., Roussev, I.I.,Ridley, A., De Zeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, J. Geophys. Res. 109, A02107. DOI. ADSCrossRefGoogle Scholar
  33. Manchester, W.B., Vourlidas, A., Tóth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Astrophys. J. 684, 1448. DOI. ADSCrossRefGoogle Scholar
  34. Marubashi, K.: 1986, Adv. Space Res. 6, 335. DOI. ADSCrossRefGoogle Scholar
  35. Marubashi, K., Lepping, R.P.: 2007, Ann. Geophys. 25, 2453. DOI. ADSCrossRefGoogle Scholar
  36. Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Ann. Geophys. 26, 3139. DOI. ADSCrossRefGoogle Scholar
  37. Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Kilpua, E.K.J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., Biernat, H.K.: 2009a, J. Geophys. Res. 114, 4102. DOI. CrossRefGoogle Scholar
  38. Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009b, Solar Phys. 256, 427. DOI. ADSCrossRefGoogle Scholar
  39. Nakwacki, M.S., Dasso, S., Mandrini, C.H., Démoulin, P.: 2008, J. Atmos. Solar-Terr. Phys. 70, 1318. DOI. ADSCrossRefGoogle Scholar
  40. Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, J. Geophys. Res. 117, 6106. DOI. CrossRefGoogle Scholar
  41. Nieves-Chinchilla, T., Vourlidas, A., Stenborg, G., Savani, N.P., Koval, A., Szabo, A., Jian, L.K.: 2013, Astrophys. J. 779, 55. DOI. ADSCrossRefGoogle Scholar
  42. Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, Astrophys. J. 823, 27. DOI. ADSCrossRefGoogle Scholar
  43. Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-Haddad, N.A., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2018, Solar Phys. 293, 25, DOI. ADSCrossRefGoogle Scholar
  44. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F.: 1995, Space Sci. Rev. 71, 55. DOI. ADSCrossRefGoogle Scholar
  45. Owens, M.J.: 2006, J. Geophys. Res. 111, A12109. DOI. ADSCrossRefGoogle Scholar
  46. Richardson, I.G., Cane, H.V.: 2004, Geophys. Res. Lett. 31, 18804. DOI. ADSCrossRefGoogle Scholar
  47. Richardson, I.G., Cane, H.V.: 2010, Solar Phys. 264, 189. DOI. ADSCrossRefGoogle Scholar
  48. Riley, P., Gosling, J.T., Pizzo, V.J.: 1997, J. Geophys. Res. 102, 14677. DOI. ADSCrossRefGoogle Scholar
  49. Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, J. Atmos. Solar-Terr. Phys. 66, 1321. DOI. ADSCrossRefGoogle Scholar
  50. Roussev, I.I., Galsgaard, K., Downs, C., Lugaz, N., Sokolov, I.V., Moise, E., Lin, J.: 2012, Nat. Phys. 8, 845. DOI. CrossRefGoogle Scholar
  51. Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, J. Geophys. Res. 117, A09101. DOI. ADSCrossRefGoogle Scholar
  52. Savani, N.P., Rouillard, A.P., Davies, J.A., Owens, M.J., Forsyth, R.J., Davis, C.J., Harrison, R.A.: 2009, Ann. Geophys. 27, 4349. DOI. ADSCrossRefGoogle Scholar
  53. Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Kusano, K., Shiota, D., Kataoka, R., Jian, L., Bothmer, V.: 2011, Astrophys. J. 732, 117. DOI. ADSCrossRefGoogle Scholar
  54. Sonnerup, B.U.Ö., Scheible, M.: 1998, ISSI Sci. Rep. Ser. 1, 185. ADSGoogle Scholar
  55. Tousey, R.: 1973, Bull. Am. Astron. Soc. 5, 419. ADSGoogle Scholar
  56. Vandas, M., Odstrcil, D., Watari, S.: 2002, J. Geophys. Res. 107, 1236. DOI. CrossRefGoogle Scholar
  57. Vourlidas, A., Balmaceda, L.A., Stenborg, G., Dal Lago, A.: 2017, Astrophys. J. 838, 141. DOI. ADSCrossRefGoogle Scholar
  58. Winslow, R.M., Lugaz, N., Schwadron, N.A., Farrugia, C.J., Yu, W., Raines, J.M., Mays, M.L., Galvin, A.B., Zurbuchen, T.H.: 2016, J. Geophys. Res. 121, 6092. DOI. CrossRefGoogle Scholar
  59. Yu, W., Farrugia, C.J., Lugaz, N., Galvin, A.B., Kilpua, E.K.J., Kucharek, H., Möstl, C., Leitner, M., Torbert, R.B., Simunac, K.D.C., Luhmann, J.G., Szabo, A., Wilson, L.B., Ogilvie, K.W., Sauvaud, J.A.: 2014, J. Geophys. Res. 119, 689. DOI. CrossRefGoogle Scholar
  60. Zhang, G., Burlaga, L.F.: 1988, J. Geophys. Res. 93, 2511. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.IACS-Catholic University of AmericaWashingtonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.University of Maryland Baltimore CountyBaltimoreUSA
  4. 4.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  5. 5.Center for mathematical Plasma AstrophysicsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations