Solar Physics

, 293:60 | Cite as

Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

  • Sophie A. Murray
  • Jordan A. Guerra
  • Pietro Zucca
  • Sung-Hong Park
  • Eoin P. Carley
  • Peter T. Gallagher
  • Nicole Vilmer
  • Volker Bothmer
Article

Abstract

Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

Keywords

Active regions, magnetic fields Coronal mass ejections, initiation and propagation Flares, forecasting, relation to magnetic field Sunspots, magnetic fields 

Notes

Acknowledgements

The FLARECAST database is available at http://api.flarecast.eu/ , HICAT catalogue at https://www.helcats-fp7.eu/catalogues/wp2_cat.html , and LOWCAT at https://figshare.com/articles/HELCATS_LOWCAT/4970222 . The code used to analyse these datasets to create the figures in this paper can be found on GitHub ( https://github.com/sophiemurray/helcats-flarecast ). The authors wish to acknowledge the use of Overleaf to prepare the manuscript, and also the following Python libraries and packages used when creating the figures in this paper: Astropy, Matplotlib, NumPy, pandas, Plotly, SciPy, and SunPy. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Laboratory (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut für Sonnensystemforschung (Germany), Centre Spatial de Liège (Belgium), Institut d’Optique Théorique et Appliqué (France), and Institut d’Astrophysique Spatiale (France). SDO is a mission for NASA’s Living With a Star (LWS) program, with the SDO/HMI data provided by the Joint Science Operation Center (JSOC). E.C., P.Z., and S.A.M were supported by the European Union Seventh Framework Program under grant agreement No. 606692 (HELCATS project). J.G.A., S.A.M., and S.-H.P were supported by the European Union Horizon 2020 research and innovation program under grant agreement No. 640216 (FLARECAST project). VB acknowledges support of the CGAUSS (Coronagraphic German and US Solar Probe Plus Survey) project for WISPR by the German Space Agency DLR under grant 50 OL 1601. S.A.M. acknowledges the IRC Postdoctoral Fellowship Scheme and AFOSR award FA9550-17-1-039. The authors would like to thank the anonymous referee for their suggestions to improve the paper.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2002, Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the sun. Astrophys. J. 577, 487. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Ahmed, O.W., Qahwaji, R., Colak, T., Dudok De Wit, T., Ipson, S.: 2010, A new technique for the calculation and 3d visualisation of magnetic complexities on solar satellite images. Vis. Comput. 26(5), 385. DOI. CrossRefGoogle Scholar
  3. Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Andrews, M.D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the ‘all-clear’ workshop. Astrophys. J. 829, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Barnes, D., Byrne, J., Davies, J., Harrison, R., Helcats, E.U.: 2015, HELCATS HCME_WP2_V02. DOI. https://figshare.com/articles/HELCATS_HCME_WP2_V02/1492351.
  7. Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI. ADSMathSciNetCrossRefGoogle Scholar
  8. Berghmans, D., Foing, B.H., Fleck, B.: 2002, Automated detection of CMEs in LASCO data. In: Wilson, A. (ed.) From Solar Min to Max: Half a Solar Cycle with SOHO, ESA Special Publication 508, 437. ADS. Google Scholar
  9. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014a, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-Weather HMI Active Region Patches. Solar Phys. 289, 3549. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1, 74. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J. 752, 145. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Campi, C., Benvenuto, F.: 2017, Feature selection for flarecast. Private communication. Google Scholar
  15. Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248(2), 297. DOI. ADSCrossRefGoogle Scholar
  16. Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S.R., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. 750, 23. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Davies, J.A., Perry, C.H., Trines, R.M.G.M., Harrison, R.A., Lugaz, N., Möstl, C., Liu, Y.D., Steed, K.: 2013, Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry. Astrophys. J. 777, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Deng, N., Xu, Y., Yang, G., Cao, W., Liu, C., Rimmele, T.R., Wang, H., Denker, C.: 2006, Multiwavelength study of flow fields in flaring super active region NOAA 10486. Astrophys. J. 644(2), 1278. http://stacks.iop.org/0004-637X/644/i=2/a=1278. ADSCrossRefGoogle Scholar
  19. Drake, J.F.: 1971, Characteristics of soft solar X-ray bursts. Solar Phys. 16, 152. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.-A., Gibbs, M., Burnett, C.: 2017, The economic impact of space weather: where do we stand? Risk Anal. 37(2), 206. DOI. CrossRefGoogle Scholar
  21. Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Falconer, D.A., Moore, R.L., Barghouty, A.F., Khazanov, I.: 2012, Prior flaring as a complement to free magnetic energy for forecasting solar eruptions. Astrophys. J. 757, 32. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Georgoulis, M.K.: 2010, Pre-eruption magnetic configurations in the active-region solar photosphere. Proc. Int. Astron. Union 6(S273), 495. DOI. CrossRefGoogle Scholar
  25. Georgoulis, M.: 2013, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15(11), 5022. DOI. ADSCrossRefGoogle Scholar
  26. Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J. 761(1), 61. http://stacks.iop.org/0004- 637X/761/i=1/a=61. ADSCrossRefGoogle Scholar
  28. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME Catalog. Earth Moon Planets 104, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Guerra, J.A., Pulkkinen, A., Uritsky, V.M., Yashiro, S.: 2015, Spatio-temporal scaling of turbulent photospheric line-of-sight magnetic field in active region NOAA 11158. Solar Phys. 290, 335. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Guo, J., Zhang, H.Q., Chumak, O.V.: 2007, Magnetic properties of flare-CME productive active regions and CME speed. Astron. Astrophys. 462, 1121. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Harra, L.K., Schrijver, C.J., Janvier, M., Toriumi, S., Hudson, H., Matthews, S., Woods, M.M., Hara, H., Guedel, M., Kowalski, A., Osten, R., Kusano, K., Lueftinger, T.: 2016, The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions? Solar Phys. 291, 1761. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Harrison, R.A.: 1995, The nature of solar flares associated with coronal mass ejection. Astron. Astrophys. 304, 585. ADS. ADSGoogle Scholar
  33. Harrison, R.A., Davies, J.A., Biesecker, D., Gibbs, M.: 2017, The application of heliospheric imaging to space weather operations: lessons learned from published studies. Space Weather 15(8), 985. DOI. ADSCrossRefGoogle Scholar
  34. Haynes, A.L., Parnell, C.E.: 2007, A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14(8), 082107. DOI. ADSCrossRefGoogle Scholar
  35. Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Higgins, P.A.: 2012, Sunspot group evolution and the global magnetic field of the Sun. Thesis, Trinity College Dublin. Google Scholar
  37. Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Jing, J., Yurchyshyn, V.B., Yang, G., Xu, Y., Wang, H.: 2004, On the relation between filament eruptions, flares, and coronal mass ejections. Astrophys. J. 614, 1054. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Korsós, M.B., Baranyi, T., Ludmány, A.: 2014, Pre-flare dynamics of sunspot groups. Astrophys. J. 789(2), 107. http://stacks.iop.org/0004-637X/789/i=2/a=107. ADSCrossRefGoogle Scholar
  41. Künzel, H.: 1965, Zur Klassifikation von Sonnenfleckengruppen. Astron. Nachr. 288, 177. ADS. ADSGoogle Scholar
  42. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577(1), 501. http://stacks.iop.org/0004-637X/ 577/i=1/a=501. ADSCrossRefGoogle Scholar
  43. Lara, A.: 2008, The source region of coronal mass ejections. Astrophys. J. 688, 647. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Lee, K., Moon, Y.-J., Lee, J.-Y.: 2015, Forecast of a daily halo CME occurrence probability depending on class and area change of the associated sunspot. Solar Phys. 290, 1661. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Liu, Y.: 2008, Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys. J. Lett. 679(2), L151. http://stacks.iop.org/1538-4357/679/i=2/a=L151. ADSCrossRefGoogle Scholar
  46. Magdalenić, J., Marqué, C., Krupar, V., Mierla, M., Zhukov, A.N., Rodriguez, L., Maksimović, M., Cecconi, B.: 2014, Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys. J. 791, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723, 634. DOI. ADS. ADSCrossRefGoogle Scholar
  48. McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI. ADS. ADSCrossRefGoogle Scholar
  49. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Moestl, C., Isavnin, A., Boakes, P.D., Kilpua, E.K.J., Davies, J.A., Harrison, R.A., Barnes, D., Krupar, V., Eastwood, J.P., Good, S.W., Forsyth, R.J., Bothmer, V., Reiss, M.A., Amerstorfer, T., Winslow, R.M., Anderson, B.J., Philpott, L.C., Rodriguez, L., Rouillard, A.P., Gallagher, P., Nieves-Chinchilla, T., Zhang, T.L.: 2017, Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the heliophysics system observatory. Space Weather 15(7), 955. DOI. ADSCrossRefGoogle Scholar
  51. Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Morgan, H., Byrne, J.P., Habbal, S.R.: 2012, Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J. 752, 144. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Murray, S.A., Bingham, S., Sharpe, M., Jackson, D.R.: 2017a, Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15, 577. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Murray, S.A., Zucca, P., Carley, E., Gallagher, P.: 2017b, HELCATS LOWCAT. figshare. DOI.
  55. Pant, V., Willems, S., Rodriguez, L., Mierla, M., Banerjee, D., Davies, J.A.: 2016, Automated detection of coronal mass ejections in STEREO Heliospheric Imager data. Astrophys. J. 833, 80. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Park, S.-H., Chae, J., Wang, H.: 2010, Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J. 718(1), 43. http://stacks.iop.org/0004-637X/718/i=1/a=43. ADSCrossRefGoogle Scholar
  57. Park, S.-H., Cho, K.-S., Bong, S.-C., Kumar, P., Chae, J., Liu, R., Wang, H.: 2012, The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions. Astrophys. J. 750(1), 48. http://stacks.iop.org/0004-637X/750/i=1/a=48. ADSCrossRefGoogle Scholar
  58. Plotnikov, I., Rouillard, A.P., Davies, J.A., Bothmer, V., Eastwood, J.P., Gallagher, P., Harrison, R.A., Kilpua, E., Möstl, C., Perry, C.H., Rodriguez, L., Lavraud, B., Génot, V., Pinto, R.F., Sanchez-Diaz, E.: 2016, Long-term tracking of corotating density structures using heliospheric imaging. Solar Phys. 291, 1853. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Pontin, D.I., Priest, E.R., Galsgaard, K.: 2013, On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774(2), 154. http://stacks.iop.org/0004-637X/774/i=2/a=154. ADSCrossRefGoogle Scholar
  60. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Rouillard, A.P., Lavraud, B., Genot, V., Bouchemit, M., Dufourg, N., Plotnikov, I., Pinto, R.F., Sanchez-Diaz, E., Lavarra, M., Penou, M., Jacquey, C., Andre, N., Caussarieu, S., Toniutti, J.-P., Popescu, D., Buchlin, E., Caminade, S., Alingery, P., Davies, J.A., Odstrcil, D., Mays, L.: 2017, A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. ArXiv e-prints. ADS.
  62. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. ADS. ADSCrossRefGoogle Scholar
  67. Singh, Y.P., Badruddin: 2006, Statistical considerations in superposed epoch analysis and its applications in space research. J. Atmos. Solar-Terr. Phys. 68, 803. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Tiwari, S.K., Falconer, D.A., Moore, R.L., Venkatakrishnan, P., Winebarger, A.R., Khazanov, I.G.: 2015, Near-Sun speed of CMEs and the magnetic nonpotentiality of their source active regions. Geophys. Res. Lett. 42, 5702. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Venkatakrishnan, P., Ravindra, B.: 2003, Relationship between CME velocity and active region magnetic energy. Geophys. Res. Lett. 30, 2181. DOI. ADS. ADSCrossRefGoogle Scholar
  70. Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642, 1216. DOI. ADS. ADSCrossRefGoogle Scholar
  71. Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, A04104. DOI. ADS. ADSGoogle Scholar
  72. Wang, S., Liu, C., Deng, N., Wang, H.: 2014, Sudden photospheric motion and sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 782(2), L31. http://stacks.iop.org/2041-8205/ 782/i=2/a=L31. ADSCrossRefGoogle Scholar
  73. Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Yang, G., Xu, Y., Cao, W., Wang, H., Denker, C., Rimmele, T.R.: 2004, Photospheric shear flows along the magnetic neutral line of active region 10486 prior to an X10 flare. Astrophys. J. Lett. 617(2), L151. http://stacks.iop.org/1538-4357/617/i=2/a=L151. ADSCrossRefGoogle Scholar
  75. Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. 110, A12S05. DOI. ADS. ADSCrossRefGoogle Scholar
  76. Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Youssef, M.: 2012, On the relation between the CMEs and the solar flares. NRIAG J. Astron. Geophys. 1, 172. DOI. ADS. ADSCrossRefGoogle Scholar
  78. Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., Gopalswamy, N.: 2005, Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599. DOI. ADS. ADSCrossRefGoogle Scholar
  79. Zheng, Y.: 2013, Improving CME forecasting capability: an urgent need. Space Weather 11(11), 641. DOI. ADSCrossRefGoogle Scholar
  80. Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: the 2011 August 4 filament eruption. Astrophys. J. Lett. 785(2), 88. http://stacks.iop.org/0004-637X/785/i=2/a=88. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astrophysics Research Group, School of PhysicsTrinity College DublinDublinIreland
  2. 2.Department of PhysicsVillanova UniversityVillanovaUSA
  3. 3.ASTRON Netherlands Institute for Radio AstronomyDwingelooThe Netherlands
  4. 4.Institute for Space-Earth Environmental Research (ISEE)Nagoya UniversityNagoyaJapan
  5. 5.LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universitès, UPMC Univ. Paris 06Univ. Paris Diderot, Sorbonne Paris CitèMeudonFrance
  6. 6.Station de Radioastronomie de Nancay, Observatoire de Paris, PSL Research University, CNRSUniv. OrleànsNancayFrance
  7. 7.Institute of AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations