Solar Physics

, 293:59 | Cite as

Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

  • Domagoj Ruždjak
  • Davor Sudar
  • Roman Brajša
  • Ivica Skokić
  • Ivana Poljančić Beljan
  • Rajka Jurdana-Šepić
  • Arnold Hanslmeier
  • Astrid Veronig
  • Werner Pötzi
Article

Abstract

Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

Keywords

Sunspots Differential rotation Velocity fields 

Notes

Acknowledgements

This work was partly supported by the Croatian Science Foundation under the project 6212 “Solar and Stellar Variability” and in part by the University of Rijeka under project number 13.12.1.3.03. We wish to express our gratitude to an anonymous referee, whose careful review and detailed criticism of the manuscript helped to improve the presentation and sharpen the arguments.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Balthasar, H., Fangmeier, E.: 1988, Comparison of the differential rotation laws and meridional motions determined from sunspot positions taken from the Greenwich Photoheliographic Results, the drawings of G. Spoerer, and the Kanzelhoehe data. Astron. Astrophys. 203, 381. ADS. ADSGoogle Scholar
  2. Balthasar, H., Vazquez, M., Wöhl, H.: 1986, Differential rotation of sunspot groups in the period from 1874 through 1976 and changes of the rotation velocity within the solar cycle. Astron. Astrophys. 155, 87. ADS. ADSGoogle Scholar
  3. Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Brun, A.S., Rempel, M.: 2009, Large scale flows in the solar convection zone. Space Sci. Rev. 144, 151. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Canuto, V.M., Minotti, F.O., Schilling, O.: 1994, Differential rotation and turbulent convection: A new Reynolds stress model and comparison with solar data. Astrophys. J. 425, 303. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Gilman, P.A., Howard, R.: 1984, On the correlation of longitudinal and latitudinal motions of sunspots. Solar Phys. 93, 171. DOI. ADS. ADSGoogle Scholar
  7. Haber, D.A., Hindman, B.W., Toomre, J., Thompson, M.J.: 2004, Organized subsurface flows near active regions. Solar Phys. 220, 371. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Hanasoge, S., Miesch, M.S., Roth, M., Schou, J., Schüssler, M., Thompson, M.J.: 2015, Solar dynamics, rotation, convection and overshoot. Space Sci. Rev. 196, 79. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Hanslmeier, A., Lustig, G.: 1986, Meridional motions of sunspots from 1947.9 – 1985.0. I – Latitude drift at the different solar-cycles. Astron. Astrophys. 154, 227. ADS. ADSGoogle Scholar
  10. Hathaway, D.H.: 1996, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 460, 1027. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Howard, R., Gilman, P.I., Gilman, P.A.: 1984, Rotation of the Sun measured from Mount Wilson white-light images. Astrophys. J. 283, 373. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Howard, R.F.: 1991, Cycle latitude effects for sunspot groups. Solar Phys. 135, 327. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Hržina, D., Roša, D., Hanslmeier, A., Ruždjak, V., Brajša, R.: 2007, Sungrabber – Software for measurements on solar synoptic images. Central European Astrophysical Bulletin 31. ADS.
  14. Käpylä, P.J., Mantere, M.J., Guerrero, G., Brandenburg, A., Chatterjee, P.: 2011, Reynolds stress and heat flux in spherical shell convection. Astron. Astrophys. 531, A162. DOI. ADS. CrossRefGoogle Scholar
  15. Lustig, G.: 1983, Solar rotation 1947 – 1981 – Determined from sunspot data. Astron. Astrophys. 125, 355. ADS. ADSGoogle Scholar
  16. Lustig, G., Hanslmeier, A.: 1987, Meridional motions of sunspots from 1947.9 to 1985.0. II – Latitude motions dependent on SPOT type and phase of the activity cycle. Astron. Astrophys. 172, 332. ADS. ADSGoogle Scholar
  17. Lustig, G., Wöhl, H.: 1991, The meridional motions of stable recurrent sunspots. Astron. Astrophys. 249, 528. ADS. ADSGoogle Scholar
  18. Lustig, G., Wöhl, H.: 1994, Meridional motions of sunspot groups during eleven activity cycles. Solar Phys. 152, 221. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Mandal, S., Hegde, M., Samanta, T., Hazra, G., Banerjee, D., Ravindra, B.: 2017, Kodaikanal digitized white-light data archive (1921 – 2011): Analysis of various solar cycle features. Astron. Astrophys. 601, A106. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Olemskoy, S.V., Kitchatinov, L.L.: 2005, On the determination of meridional flow on the Sun by the method of tracers. Astron. Lett. 31, 706. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Poljančić, I., Brajša, R., Ruždjak, D., Hržina, D., Jurdana-Šepić, R., Wöhl, H., Otruba, W.: 2010, A comparison of sunspot position measurements from different data sets. Sun Geosph. 5, 52. ADS. ADSGoogle Scholar
  22. Poljančić, I., Brajša, R., Hržina, D., Wöhl, H., Hanslmeier, A., Pötzi, W., Baranyi, T., Özgüç, A., Singh, J., Ruždjak, V.: 2011, Differences in heliographic positions and rotation velocities of sunspot groups from various observatories. Cent. Eur. Astrophys. Bull. 35, 59. ADS. ADSGoogle Scholar
  23. Poljančić Beljan, I., Jurdana-Šepić, R., Brajša, R., Sudar, D., Ruždjak, D., Hržina, D., Pötzi, W., Hanslmeier, A., Veronig, A., Skokić, I., Wöhl, H.: 2017, Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set. Astron. Astrophys. 606, A72. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Pulkkinen, P., Tuominen, I.: 1998a, Velocity structures from sunspot statistics in cycles 10 to 22. I. Rotational velocity. Astron. Astrophys. 332, 748. ADS. ADSGoogle Scholar
  25. Pulkkinen, P., Tuominen, I.: 1998b, Velocity structures from sunspot statistics in cycles 10 to 22. II. Latitudinal velocity and correlation functions. Astron. Astrophys. 332, 755. ADS. ADSGoogle Scholar
  26. Rüdiger, G., Hollerbach, R.: 2004, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, 343. ADS. CrossRefGoogle Scholar
  27. Ruždjak, D., Ruždjak, V., Brajša, R., Wöhl, H.: 2004, Deceleration of the rotational velocities of sunspot groups during their evolution. Solar Phys. 221, 225. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Sivaraman, K.R., Sivaraman, H., Gupta, S.S., Howard, R.F.: 2010, Return meridional flow in the convection zone from latitudinal motions of umbrae of sunspot groups. Solar Phys. 266, 247. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Skokić, I., Brajša, R., Roša, D., Hržina, D., Wöhl, H.: 2014, Validity of the relations between the synodic and sidereal rotation velocities of the Sun. Solar Phys. 289, 1471. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Sudar, D., Skokić, I., Ruždjak, D., Brajša, R., Wöhl, H.: 2014, Tracing sunspot groups to determine angular momentum transfer on the Sun. Mon. Not. Roy. Astron. Soc. 439, 2377. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Sudar, D., Skokić, I., Brajša, R., Saar, S.H.: 2015, Steps towards a high precision solar rotation profile: Results from SDO/AIA coronal bright point data. Astron. Astrophys. 575, A63. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Sudar, D., Saar, S.H., Skokić, I., Poljančić Beljan, I., Brajša, R.: 2016, Meridional motions and Reynolds stress from SDO/AIA coronal bright points data. Astron. Astrophys. 587, A29. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Sudar, D., Brajša, R., Skokić, I., Poljančić Beljan, I., Wöhl, H.: 2017, Meridional motion and Reynolds stress from Debrecen Photoheliographic Data. Solar Phys. 292, 86. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Švanda, M., Kosovichev, A.G., Zhao, J.: 2008, Effects of solar active regions on meridional flows. Astrophys. J. Lett. 680, L161. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Varela, J., Strugarek, A., Brun, A.S.: 2016, Characterizing the feedback of magnetic field on the differential rotation of solar-like stars. Adv. Space Res. 58, 1507. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Veronig, A.M., Pötzi, W.: 2016, Ground-based observations of the solar sources of space weather. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Solar Physics Meeting: Ground-Based Solar Observations in the Space Instrumentation Era, Astronomical Society of the Pacific Conference Series 504, 247. ADS. Google Scholar
  37. Vršnak, B., Brajša, R., Wöhl, H., Ruždjak, V., Clette, F., Hochedez, J.-F.: 2003, Properties of the solar velocity field indicated by motions of coronal bright points. Astron. Astrophys. 404, 1117. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Ward, F.: 1965, The general circulation of the solar atmosphere and the maintenance of the equatorial acceleration. Astrophys. J. 141, 534. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Watson, F., Fletcher, L.: 2011, Automated sunspot detection and the evolution of sunspot magnetic fields during solar cycle 23. In: Prasad Choudhary, D., Strassmeier, K.G. (eds.) Physics of Sun and Star Spots, IAU Symposium 273, 51. DOI. ADS. Google Scholar
  40. Wöhl, H., Brajša, R.: 2001, Meridional motions of stable recurrent sunspot groups. Solar Phys. 198, 57. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Zuccarello, F., Zappalá, R.A.: 2003, Angular velocity during the cycle deduced using the sunspot group age selection methodology. Astron. Nachr. 324, 464. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Domagoj Ruždjak
    • 1
  • Davor Sudar
    • 1
  • Roman Brajša
    • 1
  • Ivica Skokić
    • 1
  • Ivana Poljančić Beljan
    • 2
  • Rajka Jurdana-Šepić
    • 2
  • Arnold Hanslmeier
    • 3
  • Astrid Veronig
    • 3
    • 4
  • Werner Pötzi
    • 4
  1. 1.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  2. 2.Department of PhysicsUniversity of RijekaRijekaCroatia
  3. 3.IGAM – Institute of PhysicsUniversity of GrazGrazAustria
  4. 4.Kanzelhöhe Observatory for Solar and Environmental ResearchTreffen am Ossiacher SeeAustria

Personalised recommendations