Solar Physics

, 293:70 | Cite as

Catalogue of \({>}\,55\) MeV Wide-longitude Solar Proton Events Observed by SOHO, ACE, and the STEREOs at \({\approx}\,1\) AU During 2009 – 2016

  • Miikka Paassilta
  • Athanasios Papaioannou
  • Nina Dresing
  • Rami Vainio
  • Eino Valtonen
  • Bernd Heber
Article

Abstract

Based on energetic particle observations made at \({\approx}\,1\) AU, we present a catalogue of 46 wide-longitude (\({>}\,45^{\circ}\)) solar energetic particle (SEP) events detected at multiple locations during 2009 – 2016. The particle kinetic energies of interest were chosen as \({>}\,55\) MeV for protons and 0.18 – 0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons \({\approx}\,44^{\circ}\), electrons \({\approx}\,50^{\circ}\)), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer’s connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed distributions of the CMEs related to wide events and the CMEs related to all near-Earth SEP events of similar energy range from the same time period.

Keywords

Energetic particles, protons Energetic particles, electrons Flares, energetic particles Coronal mass ejections 

Notes

Acknowledgements

The research described in this paper was supported by ESA contract 4000120480/17/NL/LF/hh. M. Paassilta and R. Vainio acknowledge the funding from Academy of Finland (decisions 267186 and 297395). N. Dresing and B. Heber acknowledge the funding from Deutscher Akademischer Austauschdienst (DAAD 57247608) and the STEREO/SEPT, Chandra/EPHIN and SOHO/EPHIN project which is supported under grant 50OC1702 by the Federal Ministry of Economics and Technology on the basis of a decision by the German Bundestag. We would like to acknowledge and express our gratitude to the organizations and teams responsible for maintaining the data sources used in this article (SEPServer, CDAW SOHO LASCO CME Catalog, SolarSoft Latest Events Archive, NOAA/Solar-Terrestrial Physics at the National Centers for Environmental Information, Coordinated Data Analysis Web, and the ACE Science Center). CDAW SOHO LASCO CME Catalog: this CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The Radio Monitoring website: this survey is generated and maintained at the Observatoire de Paris by the LESIA UMR CNRS 8109 in cooperation with the Artemis team, Universities of Athens and Ioanina and the Naval Research Laboratory. The STEREO/SECCHI/COR2 CME catalog (the Dual-Viewpoint CME Catalog from the SECCHI/COR Telescopes): this catalogue is generated and maintained at JHU/APL, in collaboration with the NRL and GSFC, and is supported by NASA.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., Dekkali, M., Hinze, J.J., Manning, R.E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I.H., Cattell, C.A., Cecconi, B., Eastwood, J., Ergun, R.E., Fainberg, J., Hoang, S., Huttunen, K.E.J., Krucker, S., Lecacheux, A., MacDowall, R.J., Macher, W., Mangeney, A., Meetre, C.A., Moussas, X., Nguyen, Q.N., Oswald, T.H., Pulupa, M., Reiner, M.J., Robinson, P.A., Rucker, H., Salem, C., Santolik, O., Silvis, J.M., Ullrich, R., Zarka, P., Zouganelis, I.: 2008, S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Cane, H.V., Erickson, W.C., Prestage, N.P.: 2002, Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. Space Phys. 107(A10), SSH 14, 1315. DOI. ADSCrossRefGoogle Scholar
  5. Cane, H.V., Richardson, I.G., St. Cyr, O.C.: 1998, The interplanetary events of January–May, 1997 as inferred from energetic particle data, and their relationship with solar events. Geophys. Res. Lett. 25(14), 2517. DOI. ADSCrossRefGoogle Scholar
  6. Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., Malandraki, O., Dröge, W., Kartavykh, Y.: 2014, Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., Temmer, M., Veronig, A.: 2018, Long-lasting injection of solar energetic electrons into the heliosphere. Astron. Astrophys. In press. Google Scholar
  8. Gold, R.E., Krimigis, S.M., Hawkins, S.E. III, Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer Spacecraft. Space Sci. Rev. 86, 541. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Makela, P., Michalek, G.: 2015a, The mild space weather in solar cycle 24. ArXiv e-prints. ADS.
  11. Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P., Yashiro, S., Michalek, G.: 2015b, The peculiar behavior of halo coronal mass ejections in solar cycle 24. Astrophys. J. 804, L23. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Howard, R.A., Moses, J.D., Socker, D.G.: 2000, Sun–Earth connection coronal and heliospheric investigation (SECCHI). In: Fineschi, S., Korendyke, C.M., Siegmund, O.H., Woodgate, B.E. (eds.) Instrumentation for UV/EUV Astronomy and Solar Missions, Proc. SPIE 4139, 259. DOI. ADS. CrossRefGoogle Scholar
  13. Huttunen-Heikinmaa, K., Valtonen, E., Laitinen, T.: 2005, Proton and helium release times in SEP events observed with SOHO/ERNE. Astron. Astrophys. 442, 673. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Kallenrode, M.-B., Wibberenz, G., Kunow, H., Müller-Mellin, R., Stolpovskii, V., Kontor, N.: 1993, Multi-spacecraft observations of particle events and interplanetary shocks during November/December 1982. Solar Phys. 147, 377. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Klassen, A., Dresing, N., Gómez-Herrero, R., Heber, B., Müller-Mellin, R.: 2016, Unexpected spatial intensity distributions and onset timing of solar electron events observed by closely spaced STEREO spacecraft. Astron. Astrophys. 593, A31. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kwon, R.-Y., Zhang, J., Olmedo, O.: 2014, New insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. Astrophys. J. 794(2), 148. http://stacks.iop.org/0004-637X/794/i=2/a=148. ADSCrossRefGoogle Scholar
  17. Laitinen, T., Dalla, S.: 2017, Energetic particle transport across the mean magnetic field: Before diffusion. Astrophys. J. 834, 127. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Laitinen, T., Dalla, S., Marriott, D.: 2017, Early propagation of energetic particles across the mean field in turbulent plasmas. Mon. Not. Roy. Astron. Soc. 470, 3149. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Laitinen, T., Kopp, A., Effenberger, F., Dalla, S., Marsh, M.S.: 2016, Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591, A18. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Lario, D., Kallenrode, M.-B., Decker, R.B., Roelof, E.C., Krimigis, S.M., Aran, A., Sanahuja, B.: 2006, Radial and longitudinal dependence of solar 4 – 13 MeV and 27 – 37 MeV proton peak intensities and fluences: Helios and IMP 8 observations. Astrophys. J. 653, 1531. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Lario, D., Kwon, R.-Y., Vourlidas, A., Raouafi, N.E., Haggerty, D.K., Ho, G.C., Anderson, B.J., Papaioannou, A., Gómez-Herrero, R., Dresing, N., Riley, P.: 2016, Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: Evolution of the associated CME shock. Astrophys. J. 819, 72. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Luhmann, J.G., Mays, M.L., Odstrcil, D., Li, Y., Bain, H., Lee, C.O., Galvin, A.B., Mewaldt, R.A., Cohen, C.M.S., Leske, R.A., Larson, D., Futaana, Y.: 2017, Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather 15(7), 934. DOI. ADSCrossRefGoogle Scholar
  24. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563. DOI. ADS. ADSCrossRefGoogle Scholar
  25. McGuire, R.E., Lal, N., Van Hollebeke, M.A.I.: 1983, A multi-spacecraft study of the coronal and interplanetary transport of solar cosmic rays. I, II. In: International Cosmic Ray Conference, 10, 353. ADS. Google Scholar
  26. McKibben, R.B.: 1972, Observations of solar proton events made from very widely separated spacecraft. In: Bulletin of the American Astronomical Society, Bulletin of the American Astronomical Society 4, 387. ADS. Google Scholar
  27. Mewaldt, R.A., Cohen, C.M.S., Cook, W.R., Cummings, A.C., Davis, A.J., Geier, S., Kecman, B., Klemic, J., Labrador, A.W., Leske, R.A., Miyasaka, H., Nguyen, V., Ogliore, R.C., Stone, E.C., Radocinski, R.G., Wiedenbeck, M.E., Hawk, J., Shuman, S., von Rosenvinge, T.T., Wortman, K.: 2008, The Low-Energy Telescope (LET) and SEP central electronics for the STEREO mission. Space Sci. Rev. 136, 285. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Mewaldt, R.A., Cohen, C.M.S., Mason, G.M., von Rosenvinge, T.T., Li, G., Smith, C.W., Vourlidas, A.: 2015, Investigating the causes of solar-cycle variations in solar energetic particle fluences and composition. In: Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands. https://pos.sissa.it/archive/conferences/236/030/ICRC2015_030.pdf. Google Scholar
  29. Müller-Mellin, R., Böttcher, S., Falenski, J., Rode, E., Duvet, L., Sanderson, T., Butler, B., Johlander, B., Smit, H.: 2008, The Solar Electron and Proton Telescope for the STEREO mission. Space Sci. Rev. 136, 363. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. 153, L59. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev. 71, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Paassilta, M., Raukunen, O., Vainio, R., Valtonen, E., Papaioannou, A., Siipola, R., Riihonen, E., Dierckxsens, M., Crosby, N., Malandraki, O., Heber, B., Klein, K.-L.: 2017, Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24. J. Space Weather Space Clim. 7(27), A14. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Papaioannou, A., Malandraki, O.E., Dresing, N., Heber, B., Klein, K.-L., Vainio, R., Rodríguez-Gasén, R., Klassen, A., Nindos, A., Heynderickx, D., Mewaldt, R.A., Gómez-Herrero, R., Vilmer, N., Kouloumvakos, A., Tziotziou, K., Tsiropoula, G.: 2014, SEPServer catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007 – 2012. Astron. Astrophys. 569, A96. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather Space Clim. 6, A42. DOI. ADSCrossRefGoogle Scholar
  35. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90(3), 413. DOI. ADSCrossRefGoogle Scholar
  36. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Reames, D.V., Barbier, L.M., Ng, C.K.: 1996, The spatial distribution of particles accelerated by coronal mass ejection – driven shocks. Astrophys. J. 466, 473. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, \({>}\,25\) MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ∼ seven years of the STEREO mission. Solar Phys. 289, 3059. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Torsti, J., Valtonen, E., Lumme, M., Peltonen, P., Eronen, T., Louhola, M., Riihonen, E., Schultz, G., Teittinen, M., Ahola, K., Holmlund, C., Kelhä, V., Leppälä, K., Ruuska, P., Strömmer, E.: 1995, Energetic particle experiment ERNE. Solar Phys. 162, 505. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L., Afanasiev, A., Agueda, N., Aurass, H., Battarbee, M., Braune, S., Dröge, W., Ganse, U., Hamadache, C., Heynderickx, D., Huttunen-Heikinmaa, K., Kiener, J., Kilian, P., Kopp, A., Kouloumvakos, A., Maisala, S., Mishev, A., Miteva, R., Nindos, A., Oittinen, T., Raukunen, O., Riihonen, E., Rodríguez-Gasén, R., Saloniemi, O., Sanahuja, B., Scherer, R., Spanier, F., Tatischeff, V., Tziotziou, K., Usoskin, I.G., Vilmer, N.: 2013, The first SEPServer event catalogue \({\sim}\,68\)-MeV solar proton events observed at 1 AU in 1996 – 2010. J. Space Weather Space Clim. 3(27), A12. DOI. ADS. CrossRefGoogle Scholar
  41. Vainio, R., Raukunen, O., Tylka, A.J., Dietrich, W.F., Afanasiev, A.: 2017, Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron. Astrophys. 604, A47. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys. 392, 699. DOI. ADS. ADSCrossRefGoogle Scholar
  43. von Rosenvinge, T.T., Reames, D.V., Baker, R., Hawk, J., Nolan, J.T., Ryan, L., Shuman, S., Wortman, K.A., Mewaldt, R.A., Cummings, A.C., Cook, W.R., Labrador, A.W., Leske, R.A., Wiedenbeck, M.E.: 2008, The High Energy Telescope for STEREO. Space Sci. Rev. 136, 391. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Vourlidas, A., Balmaceda, L.A., Stenborg, G., Dal Lago, A.: 2017, Multi-viewpoint coronal mass ejection catalog based on STEREO COR2 observations. Astrophys. J. 838, 141. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Wiedenbeck, M.E., Mason, G.M., Cohen, C.M.S., Nitta, N.V., Gómez-Herrero, R., Haggerty, D.K.: 2013, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  2. 2.Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS)National Observatory of AthensPenteliGreece
  3. 3.Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations