Solar Physics

, 293:64 | Cite as

Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

  • Aleksandra Nina
  • Vladimir M. Čadež
  • Jovan Bajčetić
  • Srdjan T. Mitrović
  • Luka Č. Popović
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Abstract

Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT – 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

Keywords

Flares D region Electron density 

Notes

Acknowledgements

The authors thank the Ministry of Education, Science and Technological Development of the Republic of Serbia through the projects III 44002 176001, 176002 and 176004. This study is made within the COST project TD1403 and the VarSITI project. We are grateful to the anonymous referee for comments and suggestions that significantly improved our paper. The authors are also grateful to Maša Lakićević for help in calculations using CHIANTI model and Janet Machol for access to data related to GOES 14 satellite calibration. The data for this paper collected by the GOES 14 satellite are available at NOAA’s National Centers for Environmental information ( http://satdat.ngdc.noaa.gov/sem/goes/data/new_full/2010/05/goes14/csv ). Requests for the VLF data can be directed to the corresponding author.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Bajčetić, J., Nina, A., Čadež, V.M., Todorović, B.M.: 2015, Ionospheric D-region temperature relaxation and its influences on radio signal propagation after solar X-flares occurrence. Therm. Sci. 19(Suppl. 2), S299. DOI. CrossRefGoogle Scholar
  2. Cohen, M.B., Inan, U.S., Paschal, E.W.: 2010, Sensitive broadband ELF/VLF radio reception with the AWESOME instrument. IEEE Trans. Geosci. Remote 48, 3. DOI. ADSCrossRefGoogle Scholar
  3. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015, CHIANTI – An atomic database for emission lines, version 8. Astron. Astrophys. 582, A56. DOI. ADSCrossRefGoogle Scholar
  4. Dere, K., Cook, J.W., 1979, The decay of the 1973 August 9 flare. Astrophys. J. 229(1), 772. DOI. ADSCrossRefGoogle Scholar
  5. Ferguson, J.A.: 1998, Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0, Space and Naval Warfare Systems Center, San Diego. Google Scholar
  6. Grubor, D.P., Šulić, D.M., Žigman, V.: 2008, Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile. Ann. Geophys. 26, 1731. DOI. ADSCrossRefGoogle Scholar
  7. Kolarski, A., Grubor, D.: 2014, Sensing the Earth’s low ionosphere during solar flares using VLF signals and GOES solar X-ray data. Adv. Space Res. 53(11), 1595. DOI. ADSCrossRefGoogle Scholar
  8. Kumar, S., Kumar, A., Menk, F., Maurya, A.K., Singh, R., Veenadhari, B.: 2015, Response of the low-latitude D region ionosphere to extreme space weather event of 14 – 16 December 2006. J. Geophys. Res. 120(1), 788. DOI. CrossRefGoogle Scholar
  9. McEwan, M., Phillips, F.: 1978, Chemistry of the Atmosphere, Mir, Moscow. Google Scholar
  10. McRae, W.M., Thomson, N.R.: 2000, VLF phase and amplitude: daytime ionospheric parameters. J. Atmos. Solar-Terr. Phys. 62, 609. DOI. ADSCrossRefGoogle Scholar
  11. Morfitt, D.G., Shellman, C.H.: 1976, MODESRCH, an Improved Computer Program for Obtaining ELF/VLF Mode Constants in an Earth-Ionosphere Waveguide, Naval Electronics Lab. Center, San Diego. Google Scholar
  12. Nina, A., Čadež: 2014, Electron production by solar Ly-\(\alpha \) line radiation in the ionospheric D-region. Adv. Space Res. 54(7), 1276. DOI. ADSCrossRefGoogle Scholar
  13. Nina, A., Čadež, V., Srećković, V.A., Šulić, D.: 2011, The influence of solar spectral lines on electron concentration in terrestrial ionosphere. Balt. Astron. 20, 609. DOI. ADSGoogle Scholar
  14. Nina, A., Čadež, V., Srećković, V., Šulić, D.: 2012a, Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux. Nucl. Instrum. Methods Phys. Res. B 279, 110. DOI. ADSCrossRefGoogle Scholar
  15. Nina, A., Čadež, V., Šulić, D., Srećković, V., Žigman, V.: 2012b, Effective electron recombination coefficient in ionospheric D-region during the relaxation regime after solar flare from February 18, 2011. Nucl. Instrum. Methods Phys. Res. B 279, 106. DOI. ADSCrossRefGoogle Scholar
  16. Nina, A., Čadež, V.M., Popović, L.Č., Srećković, V.A.: 2017, Diagnostics of plasma in the ionospheric D-region: Detection and study of different ionospheric disturbance types. Eur. Phys. J. D 71, 189. DOI. ADSCrossRefGoogle Scholar
  17. Pacini, A.A., Raulin, J.-P.: 2006, Solar X-ray flares and ionospheric sudden phase anomalies relationship: A solar cycle phase dependence. J. Geophys. Res. 111(A9), A09301. DOI. ADSCrossRefGoogle Scholar
  18. Palit, S., Ray, S., Chakrabarti, S.K.: 2016, Inverse problem in ionospheric science: Prediction of solar soft-X-ray spectrum from very low frequency radiosonde results. Astrophys. Space Sci. 361(5), 151. DOI. ADSCrossRefGoogle Scholar
  19. Raulin, J.-P., Pacini, A.A., Kaufmann, P., Correia, E., Martinez, M.A.G.: 2006, On the detectability of solar X-ray flares using very low frequency sudden phase anomalies. J. Atmos. Solar-Terr. Phys. 68(9), 1029. DOI. ADSCrossRefGoogle Scholar
  20. Raulin, J.-P., Correia de Matos David, P., Hadano, R., Saraiva, A.C.V., Correia, E., Kaufmann, P.: 2009, The South America VLF NETwork (SAVNET). Earth Moon Planets 104, 247. DOI. ADSCrossRefGoogle Scholar
  21. Sátori, G., Williams, E., Mushtak, V.: 2005, Response of the Earth–ionosphere cavity resonator to the 11-year solar cycle in x-radiation. J. Atmos. Solar-Terr. Phys. 67(6), 553. DOI. ADSCrossRefGoogle Scholar
  22. Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 755(1), 33. DOI. ADSCrossRefGoogle Scholar
  23. Schmitter, E.D.: 2013, Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site. Ann. Geophys. 31(4), 765. DOI. ADSCrossRefGoogle Scholar
  24. Singh, A.K., Singh, A.K., Singh, R., Singh, R.P.: 2014, Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 350(1), 1. DOI. ADSMathSciNetCrossRefGoogle Scholar
  25. Šulić, D., Srećković, V.A.: 2014, A comparative study of measured amplitude and phase perturbations of VLF and LF radio signals induced by solar flares. Serb. Astron. J. 188, 45. DOI. Google Scholar
  26. Šulić, D.M., Srećković, V.A., Mihajlov, A.A.: 2016, A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Adv. Space Res. 57(4), 1029. DOI. CrossRefGoogle Scholar
  27. Thomas, R.J., Starr, R., Crannell, C.J.: 1985, Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 95(2), 323. DOI. ADSCrossRefGoogle Scholar
  28. Thomson, N.R.: 1993, Experimental daytime VLF ionospheric parameters. J. Atmos. Solar-Terr. Phys. 55, 173. DOI. ADSCrossRefGoogle Scholar
  29. Thomson, N.R., Rodger, C.J., Clilverd, M.A.: 2005, Large solar flares and their ionospheric D region enhancements. J. Geophys. Res. 110, 6306. DOI. CrossRefGoogle Scholar
  30. Todorović Drakul, M., Čadež, V. M., Bajčetić, J., Blagojević, D., Nina, A. 2016, Behaviour of electron content in the ionospheric D-region during solar X-ray flares. Serb. Astron. J. 193, 11. DOI. ADSCrossRefGoogle Scholar
  31. Wait, J.R., Spies, K.P.: 1964, Characteristics of the Earth-ionosphere waveguide for VLF radio waves, NBS Technical Note 300, Colorado. Google Scholar
  32. Weinert, H.L.: 2013, Fast Compact Algorithms and Software for Spline Smoothing, Springer, Berlin. CrossRefMATHGoogle Scholar
  33. White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from goes soft X-ray measurements. Solar Phys. 227 (4), 231. DOI. ADSCrossRefGoogle Scholar
  34. Žigman, V., Grubor, D., Šulić, D.: 2007, D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Solar-Terr. Phys. 69, 775. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Aleksandra Nina
    • 1
  • Vladimir M. Čadež
    • 2
  • Jovan Bajčetić
    • 3
  • Srdjan T. Mitrović
    • 3
  • Luka Č. Popović
    • 2
    • 4
  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Astronomical ObservatoryBelgradeSerbia
  3. 3.University of DefenceMilitary AcademyBelgradeSerbia
  4. 4.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations