Skip to main content
Log in

Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT – 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. http://satdat.ngdc.noaa.gov/sem/goes/data/new_full/2010/05/goes14/csv concerning photon wavelengths within ranges 0.05 nm and 0.4 nm, and 0.1 nm – 0.8 nm.

References

  • Bajčetić, J., Nina, A., Čadež, V.M., Todorović, B.M.: 2015, Ionospheric D-region temperature relaxation and its influences on radio signal propagation after solar X-flares occurrence. Therm. Sci. 19(Suppl. 2), S299. DOI .

    Article  Google Scholar 

  • Cohen, M.B., Inan, U.S., Paschal, E.W.: 2010, Sensitive broadband ELF/VLF radio reception with the AWESOME instrument. IEEE Trans. Geosci. Remote 48, 3. DOI .

    Article  ADS  Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015, CHIANTI – An atomic database for emission lines, version 8. Astron. Astrophys. 582, A56. DOI .

    Article  ADS  Google Scholar 

  • Dere, K., Cook, J.W., 1979, The decay of the 1973 August 9 flare. Astrophys. J. 229(1), 772. DOI .

    Article  ADS  Google Scholar 

  • Ferguson, J.A.: 1998, Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0, Space and Naval Warfare Systems Center, San Diego.

    Google Scholar 

  • Grubor, D.P., Šulić, D.M., Žigman, V.: 2008, Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile. Ann. Geophys. 26, 1731. DOI .

    Article  ADS  Google Scholar 

  • Kolarski, A., Grubor, D.: 2014, Sensing the Earth’s low ionosphere during solar flares using VLF signals and GOES solar X-ray data. Adv. Space Res. 53(11), 1595. DOI .

    Article  ADS  Google Scholar 

  • Kumar, S., Kumar, A., Menk, F., Maurya, A.K., Singh, R., Veenadhari, B.: 2015, Response of the low-latitude D region ionosphere to extreme space weather event of 14 – 16 December 2006. J. Geophys. Res. 120(1), 788. DOI .

    Article  Google Scholar 

  • McEwan, M., Phillips, F.: 1978, Chemistry of the Atmosphere, Mir, Moscow.

    Google Scholar 

  • McRae, W.M., Thomson, N.R.: 2000, VLF phase and amplitude: daytime ionospheric parameters. J. Atmos. Solar-Terr. Phys. 62, 609. DOI .

    Article  ADS  Google Scholar 

  • Morfitt, D.G., Shellman, C.H.: 1976, MODESRCH, an Improved Computer Program for Obtaining ELF/VLF Mode Constants in an Earth-Ionosphere Waveguide, Naval Electronics Lab. Center, San Diego.

    Google Scholar 

  • Nina, A., Čadež: 2014, Electron production by solar Ly-\(\alpha \) line radiation in the ionospheric D-region. Adv. Space Res. 54(7), 1276. DOI .

    Article  ADS  Google Scholar 

  • Nina, A., Čadež, V., Srećković, V.A., Šulić, D.: 2011, The influence of solar spectral lines on electron concentration in terrestrial ionosphere. Balt. Astron. 20, 609. DOI .

    ADS  Google Scholar 

  • Nina, A., Čadež, V., Srećković, V., Šulić, D.: 2012a, Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux. Nucl. Instrum. Methods Phys. Res. B 279, 110. DOI .

    Article  ADS  Google Scholar 

  • Nina, A., Čadež, V., Šulić, D., Srećković, V., Žigman, V.: 2012b, Effective electron recombination coefficient in ionospheric D-region during the relaxation regime after solar flare from February 18, 2011. Nucl. Instrum. Methods Phys. Res. B 279, 106. DOI .

    Article  ADS  Google Scholar 

  • Nina, A., Čadež, V.M., Popović, L.Č., Srećković, V.A.: 2017, Diagnostics of plasma in the ionospheric D-region: Detection and study of different ionospheric disturbance types. Eur. Phys. J. D 71, 189. DOI .

    Article  ADS  Google Scholar 

  • Pacini, A.A., Raulin, J.-P.: 2006, Solar X-ray flares and ionospheric sudden phase anomalies relationship: A solar cycle phase dependence. J. Geophys. Res. 111(A9), A09301. DOI .

    Article  ADS  Google Scholar 

  • Palit, S., Ray, S., Chakrabarti, S.K.: 2016, Inverse problem in ionospheric science: Prediction of solar soft-X-ray spectrum from very low frequency radiosonde results. Astrophys. Space Sci. 361(5), 151. DOI .

    Article  ADS  Google Scholar 

  • Raulin, J.-P., Pacini, A.A., Kaufmann, P., Correia, E., Martinez, M.A.G.: 2006, On the detectability of solar X-ray flares using very low frequency sudden phase anomalies. J. Atmos. Solar-Terr. Phys. 68(9), 1029. DOI .

    Article  ADS  Google Scholar 

  • Raulin, J.-P., Correia de Matos David, P., Hadano, R., Saraiva, A.C.V., Correia, E., Kaufmann, P.: 2009, The South America VLF NETwork (SAVNET). Earth Moon Planets 104, 247. DOI .

    Article  ADS  Google Scholar 

  • Sátori, G., Williams, E., Mushtak, V.: 2005, Response of the Earth–ionosphere cavity resonator to the 11-year solar cycle in x-radiation. J. Atmos. Solar-Terr. Phys. 67(6), 553. DOI .

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 755(1), 33. DOI .

    Article  ADS  Google Scholar 

  • Schmitter, E.D.: 2013, Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site. Ann. Geophys. 31(4), 765. DOI .

    Article  ADS  Google Scholar 

  • Singh, A.K., Singh, A.K., Singh, R., Singh, R.P.: 2014, Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 350(1), 1. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Šulić, D., Srećković, V.A.: 2014, A comparative study of measured amplitude and phase perturbations of VLF and LF radio signals induced by solar flares. Serb. Astron. J. 188, 45. DOI .

    Google Scholar 

  • Šulić, D.M., Srećković, V.A., Mihajlov, A.A.: 2016, A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Adv. Space Res. 57(4), 1029. DOI .

    Article  Google Scholar 

  • Thomas, R.J., Starr, R., Crannell, C.J.: 1985, Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 95(2), 323. DOI .

    Article  ADS  Google Scholar 

  • Thomson, N.R.: 1993, Experimental daytime VLF ionospheric parameters. J. Atmos. Solar-Terr. Phys. 55, 173. DOI .

    Article  ADS  Google Scholar 

  • Thomson, N.R., Rodger, C.J., Clilverd, M.A.: 2005, Large solar flares and their ionospheric D region enhancements. J. Geophys. Res. 110, 6306. DOI .

    Article  Google Scholar 

  • Todorović Drakul, M., Čadež, V. M., Bajčetić, J., Blagojević, D., Nina, A. 2016, Behaviour of electron content in the ionospheric D-region during solar X-ray flares. Serb. Astron. J. 193, 11. DOI .

    Article  ADS  Google Scholar 

  • Wait, J.R., Spies, K.P.: 1964, Characteristics of the Earth-ionosphere waveguide for VLF radio waves, NBS Technical Note 300, Colorado.

  • Weinert, H.L.: 2013, Fast Compact Algorithms and Software for Spline Smoothing, Springer, Berlin.

    Book  MATH  Google Scholar 

  • White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from goes soft X-ray measurements. Solar Phys. 227 (4), 231. DOI .

    Article  ADS  Google Scholar 

  • Žigman, V., Grubor, D., Šulić, D.: 2007, D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Solar-Terr. Phys. 69, 775. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Science and Technological Development of the Republic of Serbia through the projects III 44002 176001, 176002 and 176004. This study is made within the COST project TD1403 and the VarSITI project. We are grateful to the anonymous referee for comments and suggestions that significantly improved our paper. The authors are also grateful to Maša Lakićević for help in calculations using CHIANTI model and Janet Machol for access to data related to GOES 14 satellite calibration. The data for this paper collected by the GOES 14 satellite are available at NOAA’s National Centers for Environmental information ( http://satdat.ngdc.noaa.gov/sem/goes/data/new_full/2010/05/goes14/csv ). Requests for the VLF data can be directed to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Nina.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nina, A., Čadež, V.M., Bajčetić, J. et al. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data. Sol Phys 293, 64 (2018). https://doi.org/10.1007/s11207-018-1279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1279-4

Keywords

Navigation