Solar Physics

, 293:47 | Cite as

The “FIP Effect” and the Origins of Solar Energetic Particles and of the Solar Wind

  • Donald V. Reames


We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at \({\approx}\,10~\mbox{eV}\) in the SEPs but \({\approx}\,14~\mbox{eV}\) for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.


Solar energetic particles Solar wind Coronal mass ejections Solar system abundances Solar flares 



The author thanks Martin Laming for helpful discussions related to the theory included in this manuscript.

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.


  1. Abbo, L., et al.: 2016, Slow solar wind: Observations and modeling. Space Sci. Rev. 201, 55. DOI. ADSCrossRefGoogle Scholar
  2. Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481. DOI. ADSCrossRefGoogle Scholar
  3. Bochsler, P.: 2007, Solar abundances of oxygen and neon derived from solar wind observations. Astron. Astrophys. 471, 315. DOI. ADSCrossRefGoogle Scholar
  4. Bochsler, P.: 2009, Composition of matter in the heliosphere. Proc. Int. Astron. Union 257, 17. DOI. Google Scholar
  5. Breneman, H.H., Stone, E.C.: 1985, Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 299, L57. DOI. ADSCrossRefGoogle Scholar
  6. Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: 2016, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947. DOI. CrossRefGoogle Scholar
  7. Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., Bonofacio, P.: 2011, Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Solar Phys. 268, 255. DOI. ADSCrossRefGoogle Scholar
  8. Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI. ADSCrossRefGoogle Scholar
  9. Collier, M.R., Hamilton, D.C., Gloeckler, G., Bochsler, P., Sheldon, R.B.: 1996, Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS. Geophys. Res. Lett. 23, 1191. DOI. ADSCrossRefGoogle Scholar
  10. Desai, M.I., Giacalone, J.: 2016, Large gradual solar energetic particle events. Living Rev. Solar Phys.. DOI. Google Scholar
  11. Desai, M.I., Mason, G.M., Dwyer, J.R., Mazur, J.E., Gold, R.E., Krimigis, S.M., Smith, C.W., Skoug, R.M.: 2003, Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys. J. 588, 1149. DOI. ADSCrossRefGoogle Scholar
  12. Feldman, U., Widing, K.G.: 2007, Spectroscopic measurement of coronal compositions. Space Sci. Rev. 130, 115. DOI. ADSCrossRefGoogle Scholar
  13. Fludra, A., Schmelz, J.T.: 1999, The absolute coronal abundances of sulfur, calcium, and iron from Yohkoh-BCS flare spectra. Astron. Astrophys. 348, 286. ADSGoogle Scholar
  14. Gloeckler, G., Geiss, J.: 2007, The composition of the solar wind in polar coronal holes. Space Sci. Rev. 130, 139. DOI. ADSCrossRefGoogle Scholar
  15. Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937. DOI. ADSCrossRefGoogle Scholar
  16. Kahler, S.W., Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J.: 1984, Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683. DOI. ADSCrossRefGoogle Scholar
  17. Laming, J.M.: 2009, Non-WKB models of the first ionization potential effect: Implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. 695, 954. DOI. ADSCrossRefGoogle Scholar
  18. Laming, J.M.: 2015, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Solar Phys. 12, 2. DOI. ADSCrossRefGoogle Scholar
  19. Laming, J.M.: 2017, The first ionization potential effect from the ponderomotive force: On the polarization and coronal origin of Alfvén waves. Astrophys. J. Lett. 844, L153. DOI. ADSCrossRefGoogle Scholar
  20. Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38. DOI. ADSCrossRefGoogle Scholar
  21. Laming, J.M., Moses, J.D., Ko, Y.-K., Ng, C.K., Rakowski, C.E., Tylka, A.J.: 2013, On the remote detection of suprathermal ions in the solar corona and their role as seeds for solar energetic particle production. Astrophys. J. 770, 73. DOI. ADSCrossRefGoogle Scholar
  22. Lee, M.A., Mewaldt, R.A., Giacalone, J.: 2012, Shock acceleration of ions in the heliosphere. Space Sci. Rev. 173, 247. DOI. ADSCrossRefGoogle Scholar
  23. Lodders, K., Palme, H., Gail, H.-P.: 2009, Abundances of the elements in the solar system. In: Trümper, J.E. (ed.) Landolt-Börnstein, New Series VI/4B, Springer, Berlin, 560. Chapter 4.4. Google Scholar
  24. Mason, G.M., Mazur, J.E., Dwyer, J.R., Reames, D.V., von Rosenvinge, T.T.: 1997, New spectral and abundance features of interplanetary heavy ions in corotating interaction regions. Astrophys. J. 486, 149. DOI. ADSCrossRefGoogle Scholar
  25. Mason, G.M., Sanderson, T.R.: 1999, CIR associated energetic particles in the inner and middle heliosphere. Space Sci. Rev. 89, 77. DOI. ADSCrossRefGoogle Scholar
  26. Mewaldt, R.A., Cohen, C.M.S., Leske, R.A., Christian, E.R., Cummings, A.C., Stone, E.C., von Rosenvinge, T.T., Wiedenbeck, M.E.: 2002, Fractionation of solar energetic particles and solar wind according to first ionization potential. Adv. Space Res. 30, 79. DOI. ADSCrossRefGoogle Scholar
  27. Meyer, J.-P.: 1985, The baseline composition of solar energetic particles. Astrophys. J. Suppl. 57, 151. DOI. ADSCrossRefGoogle Scholar
  28. Ng, C.K., Reames, D.V., Tylka, A.J.: 2003, Modeling shock-accelerated solar energetic particles coupled to interplanetary Alfvén waves. Astrophys. J. 591, 461. DOI. ADSCrossRefGoogle Scholar
  29. Rakowsky, C.E., Laming, J.M.: 2012, On the origin of the slow speed solar wind: Helium abundance variations. Astrophys. J. 754, 65. DOI. ADSCrossRefGoogle Scholar
  30. Reames, D.V.: 1995, Coronal Abundances determined from energetic particles. Adv. Space Res. 15(7), 41. CrossRefGoogle Scholar
  31. Reames, D.V.: 2009a, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812. DOI. ADSCrossRefGoogle Scholar
  32. Reames, D.V.: 2009b, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844. DOI. ADSCrossRefGoogle Scholar
  33. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI. ADSCrossRefGoogle Scholar
  34. Reames, D.V.: 2014, Element abundances in solar energetic particles and the solar corona. Solar Phys. 289, 977. DOI. ADSCrossRefGoogle Scholar
  35. Reames, D.V.: 2015, What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci. Rev. 194, 303. DOI. ADSCrossRefGoogle Scholar
  36. Reames, D.V.: 2016a, Temperature of the source plasma in gradual solar energetic particle events. Solar Phys. 291, 911. DOI. ADSCrossRefGoogle Scholar
  37. Reames, D.V.: 2016b, The origin of element abundance variations in solar energetic particles. Solar Phys. 291, 2099. DOI. ADSCrossRefGoogle Scholar
  38. Reames, D.V.: 2017a, Solar Energetic Particles, Lecture Notes in Physics 932, Springer, Berlin ISBN 978-3-319-50870-2. DOI. Google Scholar
  39. Reames, D.V.: 2017b, The abundance of helium in the source plasma of solar energetic particles. Solar Phys. 292, 156. DOI. arXiv. ADSCrossRefGoogle Scholar
  40. Reames, D.V.: 2018, Abundances, ionization states, temperatures, and FIP in solar energetic particles. Space Sci. Rev., submitted. arXiv.
  41. Reames, D.V., Cliver, E.W., Kahler, S.W.: 2014, Abundance enhancements in impulsive solar energetic-particle events with associated coronal mass ejections. Solar Phys. 289, 3817. DOI. ADSCrossRefGoogle Scholar
  42. Reames, D.V., Richardson, I.G., Barbier, L.M.: 1991, On the differences in element abundances of energetic ions from corotating events and from large solar events. Astrophys. J. Lett. 382, L43. DOI. ADSCrossRefGoogle Scholar
  43. Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267. DOI. ADSCrossRefGoogle Scholar
  44. Richardson, I.G., Barbier, L.M., Reames, D.V., von Rosenvinge, T.T.: 1993, Corotating MeV/amu ion enhancements at \({\leq}\,1~\mbox{AU}\) from 1978 to 1986. J. Geophys. Res. 98, 13. DOI. ADSCrossRefGoogle Scholar
  45. Rouillard, A.C., Odstrčil, D., Sheeley, N.R. Jr., Tylka, A.J., Vourlidas, A., Mason, G., Wu, C.-C., Savani, N.P., Wood, B.E., Ng, C.K., et al.: 2011, Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J. 735, 7. DOI. ADSCrossRefGoogle Scholar
  46. Rouillard, A., Sheeley, N.R. Jr., Tylka, A., Vourlidas, A., Ng, C.K., Rakowski, C., Cohen, C.M.S., Mewaldt, R.A., Mason, G.M., Reames, D., et al.: 2012, The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44. DOI. ADSCrossRefGoogle Scholar
  47. Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 755, 33. ADSCrossRefGoogle Scholar
  48. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474. DOI. ADSCrossRefGoogle Scholar
  49. Webber, W.R.: 1975, Solar and galactic cosmic ray abundances – A comparison and some comments. In: Proc. 14th Int. Cos. Ray Conf., Munich, 5, 1597. Google Scholar
  50. Zank, G.P., Li, G., Verkhoglyadova, O.: 2007, Particle acceleration at interplanetary shocks. Space Sci. Rev. 130, 255. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations