Solar Physics

, 293:46 | Cite as

Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot

  • L. Bharti
  • C. Quintero Noda
  • S. Rakesh
  • B. Sobha
  • A. Pandya
  • C. Joshi
Article

Abstract

High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.

Keywords

Sun: photosphere Sun: magnetic fields Sun: sunspots Sun: high resolution observations 

Notes

Acknowledgements

We thank the anonymous referee for constructive comments and suggestions that improved the presentation of this manuscript. CQN thanks B. Ruiz Cobo for his comments and suggestions for improving the inversion method. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). TRACE is a NASA Small Explorer satellite operated at the NASA Goddard Space Flight Center by NASA and Lockheed Martin. LB thanks Bal Shiksha Sadan Samiti, Udaipur (a nongovernmental organization [NGO] for supporting this research.)

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2018_1265_MOESM1_ESM.mp4 (8.9 mb)
(MP4 8.9 MB)

References

  1. Asai, A., Ishii, T.T., Kurokawa, H.: 2001, Plasma ejections from a light bridge in a sunspot umbra. Astrophys. J. Lett. 555, L65. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berger, T.E., Berdyugina, S.V.: 2003, The observation of sunspot light-bridge structure and dynamics. Astrophys. J. Lett. 589, L117. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bharti, L.: 2015, Fine structure above a light bridge in the transition region and corona. Mon. Not. Roy. Astron. Soc. 452, L16. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bharti, L., Beeck, B., Schüssler, M.: 2010, Properties of simulated sunspot umbral dots. Astron. Astrophys. 510, A12. DOI. ADS. CrossRefGoogle Scholar
  5. Bharti, L., Hirzberger, J., Solanki, S.K.: 2013, Fine structures in the atmosphere above a sunspot umbra. Astron. Astrophys. 552, L1. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Bharti, L., Solanki, S.K., Hirzberger, J.: 2010, Evidence for convection in sunspot penumbrae. Astrophys. J. Lett. 722, L194. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Bharti, L., Solanki, S.K., Hirzberger, J.: 2017, Lambda-shaped jets from a penumbral intrusion into a sunspot umbra: a possibility for magnetic reconnection. Astron. Astrophys. 597, A127. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Bharti, L., Rimmele, T., Jain, R., Jaaffrey, S.N.A., Smartt, R.N.: 2007, Detection of opposite polarities in a sunspot light bridge: evidence of low-altitude magnetic reconnection. Mon. Not. Roy. Astron. Soc. 376, 1291. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Bharti, L., Joshi, C., Jaaffrey, S.N.A., Jain, R.: 2009, Spectropolarimetery of umbral fine structures from Hinode: evidence for magnetoconvection. Mon. Not. Roy. Astron. Soc. 393, 65. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Bharti, L., Cameron, R.H., Rempel, M., Hirzberger, J., Solanki, S.K.: 2012, Waves as the source of apparent twisting motions in sunspot penumbrae. Astrophys. J. 752, 128. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Bharti, L., Quintero Noda, C., Joshi, C., Rakesh, S., Pandya, A.: 2016, Fine structures at pore boundary. Mon. Not. Roy. Astron. Soc. 462, L93. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Felipe, T., Collados, M., Khomenko, E., Rajaguru, S.P., Franz, M., Kuckein, C., Asensio Ramos, A.: 2017, Signatures of the impact of flare ejected plasma on the photosphere of a sunspot light-bridge. Astron. Astrophys. 608, 97. ADS. ADSCrossRefGoogle Scholar
  13. Guglielmino, S.L., Romano, P., Zuccarello, F.: 2017, Observational evidence of a flux rope within a sunspot umbra. Astrophys. J. Lett. 846, L16. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., et al.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229. ADSCrossRefGoogle Scholar
  15. Ichimoto, K., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R.A., Tarbell, T.D., Title, A.M., Lites, B.W., Kubo, M., Nagata, S.: 2007, Twisting motions of sunspot penumbral filaments. Science 318, 558. DOI. ADS. CrossRefGoogle Scholar
  16. Joshi, J., Pietarila, A., Hirzberger, J., Solanki, S.K., Aznar Cuadrado, R., Merenda, L.: 2011, Convective nature of sunspot penumbral filaments: discovery of downflows in the deep photosphere. Astrophys. J. Lett. 734, L18. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Katsukawa, Y., Berger, T.E., Ichimoto, K., Lites, B.W., Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M., Tsuneta, S.: 2007, Small-scale jetlike features in penumbral chromospheres. Science 318, 1594. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Kleint, L., Sainz Dalda, A.: 2013, Unusual filaments inside the umbra. Astrophys. J. 770, 74. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Lagg, A., Solanki, S.K., van Noort, M., Danilovic, S.: 2014, Vigorous convection in a sunspot granular light bridge. Astron. Astrophys. 568, A60. DOI. ADS. CrossRefGoogle Scholar
  20. Lites, B.W., Akin, D.L., Card, G., Cruz, T., Duncan, D.W., Edwards, C.G., Elmore, D.F., Hoffmann, C., Katsukawa, Y., Katz, N., Kubo, M., Ichimoto, K., Shimizu, T., Shine, R.A., Streander, K.V., Suematsu, A., Tarbell, T.D., Title, A.M., Tsuneta, S.: 2013, The Hinode spectro-polarimeter. Solar Phys. 283, 579. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Liu, S.: 2012, A coronal jet ejection from a sunspot light bridge. Publ. Astron. Soc. Aust. 29, 193. ADSCrossRefGoogle Scholar
  22. Louis, R.E., Beck, C., Ichimoto, K.: 2014, Small-scale chromospheric jets above a sunspot light bridge. Astron. Astrophys. 567, A96. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Louis, R.E., Bayanna, A.R., Mathew, S.K., Venkatakrishnan, P.: 2008, Dynamics of sunspot light bridges as revealed by high-resolution images from Hinode. Solar Phys. 252, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Magara, T.: 2010, A magnetohydrodynamic model focused on the configuration of magnetic field responsible for a solar penumbral microjet. Astrophys. J. Lett. 715, L40. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Min, S., Chae, J.: 2009, The rotating sunspot in AR 10930. Solar Phys. 258, 203. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Muhamad, J., Kusano, K., Inoue, S., Shiota, D.: 2017, Magnetohydrodynamic simulations for studying solar flare trigger mechanism. Astrophys. J. 842, 86. ADSCrossRefGoogle Scholar
  27. Quintero Noda, C., Asensio Ramos, A., Orozco Suárez, D., Ruiz Cobo, B.: 2015, Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements. Astron. Astrophys. 579, A3. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Quintero Noda, C., Shimizu, T., Ruiz Cobo, B., Suematsu, Y., Katsukawa, Y., Ichimoto, K.: 2016, Analysis of a spatially deconvolved solar pore. Mon. Not. Roy. Astron. Soc. 460, 1476. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Rempel, M., Schlichenmaier, R.: 2011, Sunspot modeling: from simplified models to radiative MHD simulations. Living Rev. Solar Phys. 8, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Rempel, M., Schüssler, M., Knölker, M.: 2009, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Rimmele, T.: 2008, On the relation between umbral dots, dark-cored filaments, and light bridges. Astrophys. J. 672, 684. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Rimmele, T., Marino, J.: 2006, The evershed flow: flow geometry and its temporal evolution. Astrophys. J. 646, 593. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Roy, J.R.: 1973, The magnetic properties of solar surges. Solar Phys. 28, 95. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Ruiz Cobo, B., Asensio Ramos, A.: 2013, Returning magnetic flux in sunspot penumbrae. Astron. Astrophys. 549, L4. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Ruiz Cobo, B., del Toro Iniesta, J.C.: 1992, Inversion of Stokes profiles. Astrophys. J. 398, 375. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Singh, K.A.P., Isobe, H., Nishida, K., Shibata, K.: 2012, Systematic motion of fine-scale jets and successive reconnection in solar chromospheric anemone jet observed with the solar optical telescope/Hinode. Astrophys. J. 760, 28. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Siu-Tapia, A., Lagg, A., Solanki, S.K., van Noort, M., Jurčák, J.: 2017, Normal and counter Evershed flows in the photospheric penumbra of a sunspot. SPINOR 2D inversions of Hinode-SOT/ SP observations. ArXiv e-prints. ADS.
  38. Sobotka, M., Bonet, J.A., Vazquez, M.: 1993, A high-resolution study of inhomogeneities in sunspot umbrae. Astrophys. J. 415, 832. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Tiwari, S.K., van Noort, M., Lagg, A., Solanki, S.K.: 2013, Structure of sunspot penumbral filaments: a remarkable uniformity of properties. Astron. Astrophys. 557, A25. DOI. ADS. CrossRefGoogle Scholar
  41. Toriumi, S., Cheung, M.C.M., Katsukawa, Y.: 2015, Light bridge in a developing active region. II. Numerical simulation of flux emergence and light bridge formation. Astrophys. J. 811, 138. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Toriumi, S., Katsukawa, Y., Cheung, M.C.M.: 2015, Light bridge in a developing active region. I. Observation of light bridge and its dynamic activity phenomena. Astrophys. J. 811, 137. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W.: 2008, The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Yurchyshyn, V., Abramenko, V., Kosovichev, A., Goode, P.: 2014, High resolution observations of chromospheric jets in sunspot umbra. Astrophys. J. 787, 58. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Zhang, J., Tian, H., He, J., Wang, L.: 2017, Surge-like oscillations above sunspot light bridges driven by magnetoacoustic shocks. Astrophys. J. 838, 2. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • L. Bharti
    • 1
  • C. Quintero Noda
    • 2
  • S. Rakesh
    • 3
  • B. Sobha
    • 3
  • A. Pandya
    • 3
  • C. Joshi
    • 3
  1. 1.Bal Shiksha Sadan SocietyUdaipurIndia
  2. 2.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  3. 3.JECRC UniversityJaipurIndia

Personalised recommendations