Solar Physics

, 293:44 | Cite as

Image Quality in High-resolution and High-cadence Solar Imaging

  • C. Denker
  • E. Dineva
  • H. Balthasar
  • M. Verma
  • C. Kuckein
  • A. Diercke
  • S. J. González Manrique


Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.


Granulation Sunspots Instrumental effects Instrumentation and data management 



The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max Planck Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic. We thank Drs. Peter Gömöry and Thomas Granzer for carefully reading the manuscript and providing valuable comments. CD, CK, HB, and MV were supported by grant DE 787/5-1 of the Deutsche Forschungsgemeinschaft (DFG). SJGM acknowledges support of project VEGA 2/0004/16 and is grateful for financial support from the Leibniz Graduate School for Quantitative Spectroscopy in Astrophysics, a joint project of the Leibniz Institute for Astrophysics Potsdam and the Institute of Physics and Astronomy of the University of Potsdam. This study is supported by the European Commission’s FP7 Capacities Program under the Grant Agreement number 312495.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Acton, D.S., Smithson, R.C.: 1992, Solar imaging with a segmented adaptive mirror. Appl. Opt. 31, 3161. DOI. ADSCrossRefGoogle Scholar
  2. Ballesteros, E., Collados, M., Bonet, J.A., Lorenzo, F., Viera, T., Reyes, M., Rodriguez Hidalgo, I.: 1996, Two-dimensional, high spatial resolution, solar spectroscopy using a correlation tracker, I: correlation tracker description. Astron. Astrophys. Suppl. Ser. 115, 353. ADSGoogle Scholar
  3. Beard, A., Cowan, B., Ferayorni, A.: 2014, DKIST visible broadband imager data processing pipeline. In: Chiozzi, G., Radziwill, N.M. (eds.) Software and Cyberinfrastructure for Astronomy III, Proc. SPIE 9152, 91521J. DOI. Google Scholar
  4. Bello González, N., Kneer, F.: 2008, Narrow-band full stokes polarimetry of small structures on the Sun with Speckle methods. Astron. Astrophys. 480, 265. DOI. ADSCrossRefGoogle Scholar
  5. Berkefeld, T., Soltau, D., Schmidt, D., von der Lühe, O.: 2010, Adaptive optics development at the German solar telescopes. Appl. Opt. 49, G155. DOI. CrossRefGoogle Scholar
  6. Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: 2012, The GREGOR adaptive optics system. Astron. Nachr. 333, 863. DOI. ADSCrossRefGoogle Scholar
  7. Berukoff, S., Hays, T., Reardon, K., Spiess, D., Watson, F., Wiant, S.: 2016, Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST data center. In: Chiozzi, G., Guzman, J.C. (eds.) Software and Cyberinfrastructure for Astronomy IV, Proc. SPIE 9913, 99131F. DOI. Google Scholar
  8. Brandt, P.N., Wöhl, H.: 1982, Solar site-testing campaign of JOSO on the Canary Islands in 1979. Astron. Astrophys. 109, 77. ADSGoogle Scholar
  9. Carlsson, M., Stein, R.F., Nordlund, Å., Scharmer, G.B.: 2004, Observational manifestations of solar magnetoconvection: center-to-limb variation. Astrophys. J. Lett. 610, L137. DOI. ADSCrossRefGoogle Scholar
  10. Collados, M., Bettonvil, F., Cavaller, L., Ermolli, I., Gelly, B., Grivel-Gelly, C., Pérez, A., Socas-Navarro, H., Soltau, D., Volkmer, R.: 2010, European Solar Telescope: project status. In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) Ground-based and airborne telescopes III, Proc. SPIE 7733, 77330H. CrossRefGoogle Scholar
  11. de Boer, C.R.: 1993, Speckle-Interferometrie und ihre Anwendung auf die Sonnenbeobachtung. PhD thesis, Georg-August Universität Göttingen, Germany. Google Scholar
  12. Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., Xiang, Y., Jin, Z., Cao, W.: 2015, Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity. Solar Phys. 290, 1479. DOI. ADSCrossRefGoogle Scholar
  13. Denker, C.: 2010, Instrument and data analysis challenges for imaging spectropolarimetry. Astron. Nachr. 331, 648. DOI. ADSCrossRefGoogle Scholar
  14. Denker, C., Yang, G., Wang, H.: 2001, Near real-time image reconstruction. Solar Phys. 202, 63. ADSCrossRefGoogle Scholar
  15. Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.R.: 2005, High-spatial resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction. Solar Phys. 227, 217. DOI. ADSCrossRefGoogle Scholar
  16. Denker, C., Tritschler, A., Rimmele, T.R., Richards, K., Hegwer, S.L., Wöger, F.: 2007a, Adaptive optics at the Big Bear Solar Observatory: instrument description and first observations. Publ. Astron. Soc. Pac. 119, 170. DOI. ADSCrossRefGoogle Scholar
  17. Denker, C., Deng, N., Rimmele, T.R., Tritschler, A., Verdoni, A.: 2007b, Field-dependent adaptive optics correction derived with the spectral ratio technique. Solar Phys. 241, 411. DOI. ADSCrossRefGoogle Scholar
  18. Denker, C., Balthasar, H., Hofmann, A., Bello González, N., Volkmer, R.: 2010, The GREGOR Fabry–Pérot interferometer: a new instrument for high-resolution solar observations. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Ground-Based and Airborne Instrumentation for Astronomy III, Proc. SPIE 7735, 77356M. DOI. CrossRefGoogle Scholar
  19. Denker, C., von der Lühe, O., Feller, A., Arlt, K., Balthasar, H., Bauer, S.-M., Bello González, N., Berkefeld, T., Caligari, P., Collados, M., Fischer, A., Granzer, T., Hahn, T., Halbgewachs, C., Heidecke, F., Hofmann, A., Kentischer, T., Klvaňa, M., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Rendtel, J., Schmidt, D., Schmidt, W., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., Waldmann, T., Wiehr, E., Wittmann, A.D., Woche, M.: 2012, A retrospective of the GREGOR solar telescope in scientific literature. Astron. Nachr. 333, 810. DOI. ADSCrossRefGoogle Scholar
  20. Denker, C., Kuckein, C., Verma, M., González Manrique, S.J., Diercke, A., Enke, H., Klar, J., Balthasar, H., Louis, R.E., Dineva, E.: 2018a, Data analysis and management for high-resolution solar physics – image restoration and imaging spectroscopy at the GREGOR solar telescope. Astrophys. J. Suppl., submitted for publication. Google Scholar
  21. Denker, C., Kuckein, C., Verma, M., Balthasar, H., Diercke, A., Dineva, E., González Manrique, S.J., Louis, R.E., Seelemann, T., Hoch, S.: 2018b, High-Resolution Fast Imager (HiFI) for image restoration. Astron. Nachr., in preparation. Google Scholar
  22. Fried, D.L.: 1965, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. A 55, 1427. DOI. ADSMathSciNetCrossRefGoogle Scholar
  23. Fried, D.L., Mevers, G.E.: 1974, Evaluation of \(r_{0}\) for propagation down through the atmosphere. Appl. Opt. 13, 2620. DOI. ADSCrossRefGoogle Scholar
  24. Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, Prentice–Hall, Upper Saddle River. Google Scholar
  25. Halbgewachs, C., Caligari, P., Glogowski, K., Heidecke, F., Knobloch, M., Mustedanagic, M., Volkmer, R., Waldmann, T.A.: 2012, The GREGOR telescope control system. Astron. Nachr. 333, 840. DOI. ADSCrossRefGoogle Scholar
  26. Irbah, A., Borgnino, J., Laclare, F., Merlin, G.: 1993, Isoplanatism and high spatial resolution solar imaging. Astron. Astrophys. 276, 663. ADSGoogle Scholar
  27. Kitai, R., Funakoshi, Y., Ueno, S., Ichimoto, S.S.K.: 1997, Real-time frame selector and its application to observations of the horizontal velocity field in the solar photosphere. Publ. Astron. Soc. Japan 49, 513. DOI. ADSCrossRefGoogle Scholar
  28. Kneer, F.: 2012, Hopes and expectations with GREGOR. Astron. Nachr. 333, 790. DOI. ADSCrossRefGoogle Scholar
  29. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI. ADSCrossRefGoogle Scholar
  30. Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry–Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Harra, L., Antolin, P. (eds.) Fine Structure and Dynamics of the Solar Atmosphere, IAU Symp. 327, 20. DOI. Google Scholar
  31. Law, N.M., Mackay, C.D., Baldwin, J.E.: 2006, Lucky imaging: high angular resolution imaging in the visible from the ground. Astron. Astrophys. 446, 739. DOI. ADSCrossRefGoogle Scholar
  32. Law, N.M., Mackay, C.D., Dekany, R.G., Ireland, M., Lloyd, J.P., Moore, A.M., Robertson, J.G., Tuthill, P., Woodruff, H.C.: 2009, Getting lucky with adaptive optics: fast adaptive optics image selection in the visible with a Large Telescope. Astrophys. J. 692, 924. DOI. ADSCrossRefGoogle Scholar
  33. Leenaarts, J., Rutten, R.J., Carlsson, M., Uitenbroek, H.: 2006, A comparison of solar proxy-magnetometry diagnostics. Astron. Astrophys. 452, L15. DOI. ADSCrossRefGoogle Scholar
  34. Liu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., Lu, R.-W., Jin, Z.-Y., Chen, L.-F., Lou, K., Li, Z., Liu, G.-Q., Xu, Z., Rao, C.-H., Hu, Q.-Q., Li, R.-F., Fu, H.-W., Wang, F., Bao, M.-X., Wu, M.-C., Zhang, B.-R.: 2014, New Vacuum Solar Telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. DOI. ADSCrossRefGoogle Scholar
  35. Löfdahl, M.G.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Bones, P.J., Fiddy, M.A., Millane, R.P. (eds.) Image Reconstruction from Incomplete Data, Proc. SPIE 4792, 146. DOI. CrossRefGoogle Scholar
  36. Lohmann, A.W., Weigelt, G., Wirnitzer, B.: 1983, Speckle masking in astronomy – triple correlation theory and applications. Appl. Opt. 22, 4028. DOI. ADSCrossRefGoogle Scholar
  37. Lundstedt, H., Johannesson, A., Scharmer, G., Stenflo, J.O., Kusoffsky, U.: 1991, Magnetograph observations with the Swedish Solar Telescope on La Palma. Solar Phys. 132, 233. DOI. ADSCrossRefGoogle Scholar
  38. Mackay, C.: 2013, High-efficiency lucky imaging. Mon. Not. Roy. Astron. Soc. 432, 702. DOI. ADSCrossRefGoogle Scholar
  39. McBride, W.R., Wöger, F., Hegwer, S.L., Ferayorni, A., Gregory, B.S.: 2012, ATST visible broadband imager. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Ground-Based and Airborne Instrumentation for Astronomy IV, Proc. SPIE 8446, 84461B. DOI. CrossRefGoogle Scholar
  40. November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427. DOI. ADSCrossRefGoogle Scholar
  41. Peck, C.L., Wöger, F., Marino, J.: 2017, Influence of speckle image reconstruction on photometric precision for large solar telescopes. Astron. Astrophys. 607, A83. DOI. ADSCrossRefGoogle Scholar
  42. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADSCrossRefGoogle Scholar
  43. Popowicz, A., Radlak, K., Bernacki, K., Orlov, V.: 2017, Review of image quality measures for solar imaging. Solar Phys. 292, 187. DOI. ADSCrossRefGoogle Scholar
  44. Puschmann, K.G., Denker, C., Kneer, F., Al Erdogan, N., Balthasar, H., Bauer, S.M., Beck, C., Bello González, N., Collados, M., Hahn, T., Hirzberger, J., Hofmann, A., Louis, R.E., Nicklas, H., Okunev, O., Martínez Pillet, V., Popow, E., Seelemann, T., Volkmer, R., Wittmann, A.D., Woche, M.: 2012, The GREGOR Fabry–Pérot interferometer. Astron. Nachr. 333, 880. DOI. ADSCrossRefGoogle Scholar
  45. Qiu, P., Mao, Y.-N., Lu, X.-M., Xiang, E., Jiang, X.-J.: 2013, Evaluation of a scientific CMOS camera for astronomical observations. Res. Astron. Astrophys. 13, 615. DOI. ADSCrossRefGoogle Scholar
  46. Rao, C.-H., Zhu, L., Rao, X.-J., Zhang, L.-Q., Bao, H., Ma, X.-A., Gu, N.-T., Guan, C.-L., Chen, D.-H., Wang, C., Lin, J., Jin, Z.-Y., Liu, Z.: 2016, First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory. Res. Astron. Astrophys. 16, 23. DOI. ADSCrossRefGoogle Scholar
  47. Rimmele, T.R.: 2000, Solar adaptive optics. In: Wizinowich, P.L. (ed.) Adaptive Optical Systems Technology, Proc. SPIE 4007, 218. DOI. CrossRefGoogle Scholar
  48. Rimmele, T.R., Richards, K., Hegwer, S.L., Ren, D., Fletcher, S., Gregory, S., Didkovsky, L.V., Denker, C., Marquette, W., Marino, J., Goode, P.R.: 2003, Solar adaptive optics: a progress report. In: Wizinowich, P.L., Bonaccini, D. (eds.) Adaptive Optical System Technologies II, Proc. SPIE 4839, 635. DOI. CrossRefGoogle Scholar
  49. Rimmele, T.R., Richards, K., Hegwer, S., Fletcher, S., Gregory, S., Moretto, G., Didkovsky, L.V., Denker, C., Dolgushin, A., Goode, P.R., Langlois, M., Marino, J., Marquette, W.: 2004, First results from the NSO/NJIT solar adaptive optics system. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 179. DOI. CrossRefGoogle Scholar
  50. Roddier, F., Gilli, J.M., Vernin, J.: 1982, On the isoplanatic patch size in stellar speckle interferometry. J. Opt. (Paris) 13, 63. DOI. ADSCrossRefGoogle Scholar
  51. Scharmer, G., Löfdahl, M.: 1991, Swedish Solar Telescope – short summary of instrumentation and observation techniques. Adv. Space Res. 11, 129. DOI. ADSCrossRefGoogle Scholar
  52. Scharmer, G.B.: 1989, High resolution granulation observations from La Palma: techniques and first results. In: Rutten, R.J., Severino, G. (eds.) Solar and Stellar Granulation, NATO Adv. Sci. Inst. (ASI) Ser. C 263, 161. CrossRefGoogle Scholar
  53. Scharmer, G.B., Gudiksen, B.V., Kiselman, D., Löfdahl, M.G., Rouppe van der Voort, L.H.M.: 2002, Dark cores in sunspot penumbral filaments. Nature 420, 151. DOI. ADSCrossRefGoogle Scholar
  54. Scharmer, G.B., Dettori, P.M., Löfdahl, M.G., Shand, M.: 2003, Adaptive optics system for the new Swedish Solar Telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 370. DOI. CrossRefGoogle Scholar
  55. Scharr, H.: 2007, Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, B., Scharr, H. (eds.) Complex Motion Lecture Notes in Computer Sciences 3417, Springer, Berlin, 14. DOI. CrossRefGoogle Scholar
  56. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADSCrossRefGoogle Scholar
  57. Schlichenmaier, R., von der Lühe, O., Hoch, S., Soltau, D., Berkefeld, T., Schmidt, D., Schmidt, W., Denker, C., Balthasar, H., Hofmann, A., Strassmeier, K.G., Staude, J., Feller, A., Lagg, A., Solanki, S.K., Collados, M., Sigwarth, M., Volkmer, R., Waldmann, T., Kneer, F., Nicklas, H., Sobotka, M.: 2016, Active region fine structure observed at 0.08 arcsec resolution. Astron. Astrophys. 596, A7. DOI. CrossRefGoogle Scholar
  58. Schmidt, W., Kentischer, T.: 1995, Optical system of an advanced solar correlation tracker. Astron. Astrophys. Suppl. Ser. 113, 363. ADSGoogle Scholar
  59. Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI. ADSCrossRefGoogle Scholar
  60. Schröter, E.H., Soltau, D., Wiehr, E.: 1985, The German solar telescopes at the observatorio del Teide. Vistas Astron. 28, 519. DOI. ADSCrossRefGoogle Scholar
  61. Soltau, D., Volkmer, R., von der Lühe, O., Berkefeld, T.: 2012, Optical design of the new solar telescope GREGOR. Astron. Nachr. 333, 847. DOI. ADSCrossRefGoogle Scholar
  62. Sprung, D., Sucher, E., Stein, K., von der Lühe, O., Berkefeld, T.: 2016, Characterization of optical turbulence at the GREGOR solar telescope: temporal and local behavior and its influence on the solar observations. In: Stein, K.U., Gonglewski, J.D. (eds.) Optics in Atmospheric Propagation and Adaptive Systems XIX, Proc. SPIE 10002, 1000205. DOI. CrossRefGoogle Scholar
  63. Steele, I.A., Jermak, H., Copperwheat, C.M., Smith, R.J., Poshyachinda, S., Soonthorntham, B.: 2016, Experiments with synchronized sCMOS cameras. In: Holland, A.D., Beletic, J. (eds.) High Energy, Optical, and Infrared Detectors for Astronomy VII, Proc. SPIE 9915, 991522. DOI. CrossRefGoogle Scholar
  64. Steiner, O., Hauschildt, P.H., Bruls, J.: 2001, Radiative properties of magnetic elements, I: why are G-band bright points bright? Astron. Astrophys. 372, L13. DOI. ADSCrossRefGoogle Scholar
  65. Tritschler, A., Rimmele, T.R., Berukoff, S., Casini, R., Kuhn, J.R., Lin, H., Rast, M.P., McMullin, J.P., Schmidt, W., Wöger, F. (DKIST Team): 2016, Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron. Nachr. 337, 1064. DOI. ADSCrossRefGoogle Scholar
  66. van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind deconvolution with multiple objects and phase diversity. Solar Phys. 228, 191. DOI. ADSCrossRefGoogle Scholar
  67. Verma, M., Denker, C.: 2011, Horizontal flow fields observed in Hinode G-band images, I: methods. Astron. Astrophys. 529, A153. DOI. ADSCrossRefGoogle Scholar
  68. Volkmer, R., von der Lühe, O., Denker, C., Solanki, S., Balthasar, H., Berkefeld, T., Caligari, P., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Klvaňa, M., Kneer, F., Lagg, A., Popow, E., Schmidt, D., Schmidt, W., Sobotka, M., Soltau, D., Strassmeier, K.G.: 2010, GREGOR solar telescope. Astron. Nachr. 331, 624. ADSCrossRefGoogle Scholar
  69. von der Lühe, O.: 1993, Speckle imaging of solar small scale structure, I: methods. Astron. Astrophys. 268, 374. ADSGoogle Scholar
  70. von der Lühe, O.: 1998, High-resolution observations with the German vacuum tower telescope on Tenerife. New Astron. Rev. 42, 493. DOI. ADSCrossRefGoogle Scholar
  71. von der Lühe, O., Widener, A.L., Rimmele, T., Spence, G., Dunn, R.B.: 1989, Solar feature correlation tracker for ground-based telescopes. Astron. Astrophys. 224, 351. ADSGoogle Scholar
  72. von der Lühe, O., Schmidt, W., Soltau, D., Berkefeld, T., Kneer, F., Staude, J.: 2001, GREGOR: a 1.5-meter telescope for solar research. Astron. Nachr. 322, 353. ADSCrossRefGoogle Scholar
  73. von der Lühe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: adaptive optics system for the Vacuum Tower telescope at Teide observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 187. CrossRefGoogle Scholar
  74. Wang, H., Denker, C., Spirock, T., Goode, P.R., Yang, S., Marquette, W., Varsik, J., Fear, R.J., Nenow, J., Dingley, D.D.: 1998, New Digital magnetograph at Big Bear Solar Observatory. Solar Phys. 183, 1. ADSCrossRefGoogle Scholar
  75. Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, On the continuum intensity distribution of the solar photosphere. Astron. Astrophys. 503, 225. DOI. ADSCrossRefGoogle Scholar
  76. Weigelt, G., Wirnitzer, B.: 1983, Image reconstruction by the speckle-masking method. Opt. Lett. 8, 389. ADSCrossRefGoogle Scholar
  77. Wilken, V., de Boer, C.R., Denker, C., Kneer, F.: 1997, Speckle measurements of the centre-to-limb variation of the solar granulation. Astron. Astrophys. 325, 819. ADSGoogle Scholar
  78. Wöger, F.: 2010, Optical transfer functions derived from solar adaptive optics system data. Appl. Opt. 49, 1818. DOI. ADSCrossRefGoogle Scholar
  79. Wöger, F., von der Lühe, O.: 2007, Field dependent amplitude calibration of adaptive optics supported solar speckle imaging. Appl. Opt. 46, 8015. DOI. ADSCrossRefGoogle Scholar
  80. Wöger, F., von der Lühe, O.: 2008, KISIP: a software package for speckle interferometry of adaptive optics corrected solar data. In: Bridger, A., Radziwill, N.M. (eds.) Advanced Software and Control for Astronomy II, Proc. SPIE 7019, 70191E. DOI. CrossRefGoogle Scholar
  81. Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375. DOI. ADSCrossRefGoogle Scholar
  82. Zirin, H., Mosher, J.M.: 1988, The Caltech solar site survey, 1965 – 1967. Solar Phys. 115, 183. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany
  2. 2.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany
  3. 3.Astronomical Institute of the Slovak Academy of SciencesTatranská LomnicaSlovak Republic

Personalised recommendations