Skip to main content
Log in

Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 – 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of \({\approx}\,15\,\mbox{--}\,85~\mbox{MHz}\) during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that

  1. i)

    Type I storm bursts have a spectral index of \({\approx}\,{+}3.5\),

  2. ii)

    the spectral index of the background continuum is \({\approx}\,{+}2.9\),

  3. iii)

    the transition frequency between Type I and Type III storms occurs at \({\approx}\,55~\mbox{MHz}\),

  4. iv)

    Type III bursts have an average spectral index of \({\approx}\,{-}2.7\),

  5. v)

    the spectral index of the Type III continuum is \({\approx}\,{-}1.6\), and

  6. vi)

    the degree of circular polarization of all Type I (Type III) bursts is \({\approx}\,90\%\) (\(30\%\)).

The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. By transition region, we mean the region corresponding to the plasma frequency where the Type I bursts “transition” to Type III bursts.

  2. See casper.berkeley.edu/ .

  3. See www.analog.com/en/products/analog-to-digital-converters/ad-converters/ad9480.html .

  4. A FIFO buffer of variable size and read/write clocks.

References

  • Allen, C.W.: 1947, Solar radio-noise of 200 mc./s. and its relation to solar observations. Mon. Not. Roy. Astron. Soc. 107(4), 386. DOI . mnras.oxfordjournals.org/content/107/4/386.abstract .

    Article  ADS  Google Scholar 

  • Benkevitch, L.V., Rogers, A.E.E., Lonsdale, C.J., Cappallo, R.J., Oberoi, D., Erickson, P.J., Baker, K.A.V.: 2016, Van Vleck correction generalization for complex correlators with multilevel quantization. ADS .

  • Benz, A.O., Wentzel, D.G.: 1981, Coronal evolution and solar type i radio bursts – an ion-acoustic wave model. Astron. Astrophys. 94, 100. ADS .

    ADS  Google Scholar 

  • Boischot, A., de La Noe, J., Moller-Pedersen, B.: 1970, Relation between metric and decametric noise storm activity. Astron. Astrophys. 4, 159. ADS .

    ADS  Google Scholar 

  • Crochiere, R.E., Rabiner, L.R.: 1983, Multirate Digital Signal Processing, 4th edn., Prentice-Hall Signal Processing Series: Advanced Monographs 1, Prentice Hall, Upper Saddle River.

    Google Scholar 

  • de La Noe, J., Gergely, T.E.: 1977, The spectrum and position of solar noise storms at decameter wavelengths. Solar Phys. 55, 195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dodson, H.W.: 1957, Relation between optical solar features and solar radio emission. In: van de Hulst, H.C. (ed.) Radio Astronomy, IAU Symposium 4, 327. ADS .

    Google Scholar 

  • Dulk, G.A., Suzuki, S.: 1980, The position and polarization of Type III solar bursts. Astron. Astrophys. 88, 203. ADS .

    ADS  Google Scholar 

  • Ebenezer, E., Ramesh, R., Subramanian, K.R., Sundara Rajan, M.S., Sastry, C.V.: 2001, A new digital spectrograph for observations of radio burst emission from the Sun. Astron. Astrophys. 367, 1112. ADS .

    Article  ADS  Google Scholar 

  • Elgarøy, E.Ø.: 1977, Solar noise storms. ADS .

    Google Scholar 

  • Ellingson, S.W., Clarke, T.E., Cohen, A., Craig, J., Kassim, N.E., Pihlstrom, Y., Rickard, L.J., Taylor, G.B.: 2009, The long wavelength array. Proc. IEEE 97(8), 1421.

    Article  ADS  Google Scholar 

  • Gergely, T.E., Erickson, W.C.: 1975, Decameter storm radiation. I. Solar Phys. 42, 467. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gergely, T.E., Kundu, M.R.: 1975, Decameter storm radiation. II. Solar Phys. 41, 163. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hariharan, K., Ramesh, R., Kathiravan, C., Abhilash, H.N., Rajalingam, M.: 2016, High dynamic range observations of solar coronal transients at low radio frequencies with a spectro-correlator. Astrophys. J. Suppl. 222(2), 21. stacks.iop.org/0067-0049/222/i=2/a=21 .

    Article  ADS  Google Scholar 

  • Hey, J.S., Parsons, S.J., Phillips, J.W.: 1948, Some characteristics of solar radio emissions. Mon. Not. Roy. Astron. Soc. 108, 354. DOI . ADS .

    Article  ADS  Google Scholar 

  • Iwai, K., Tsuchiya, F., Morioka, A., Misawa, H.: 2012, IPRT/AMATERAS: a new metric spectrum observation system for solar radio bursts. Solar Phys. 277, 447. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kathiravan, C., Ramesh, R., Nataraj, H.S.: 2007, The post-coronal mass ejection solar atmosphere and radio noise storm activity. Astrophys. J. Lett. 656, L37. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kathiravan, C., Ramesh, R., Indrajit, V. Barve, Rajalingam, M.: 2011, Radio observations of the solar corona during an eclipse. Astrophys. J. 730, 91. ADS .

    Article  ADS  Google Scholar 

  • Kerdraon, A., Pick, M., Trottet, G., Sawyer, C., Illing, R., Wagner, W., House, L.: 1983, The association of radio noise storm enhancements with the appearance of additional material in the corona. Astrophys. J. Lett. 265, L19. ADS .

    Article  ADS  Google Scholar 

  • Kishore, P., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2014, Gauribidanur low-frequency solar spectrograph. Solar Phys. 289(10), 3995. DOI .

    Article  ADS  Google Scholar 

  • McCready, L.L., Pawsey, J.L., Payne-Scott, R.: 1947, Solar radiation at radio frequencies and its relation to sunspots. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 190, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 1980, A plasma-emission mechanism for type i solar radio emission. Solar Phys. 67, 357. ADS .

    Article  ADS  Google Scholar 

  • Mercier, C., Trottet, G.: 1997, Coronal radio bursts: a signature of nanoflares? Astrophys. J. Lett. 474(1), L65. stacks.iop.org/1538-4357/474/i=1/a=L65 .

    Article  ADS  Google Scholar 

  • Mugundhan, V., Ramesh, R., Barve, I.V., Kathiravan, C., Gireesh, G.V.S., Kharb, P., Misra, A.: 2016, Low-frequency radio observations of the solar corona with arcminute angular resolution: implications for coronal turbulence and weak energy releases. Astrophys. J. 831, 154. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nelson, G.J., Sheridan, K.V., Suzuki, S.: 1985, Measurements of solar flux density and polarization. In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, Cambridge University Press, Cambridge, 113. ADS .

    Google Scholar 

  • Oberoi, D., Matthews, L.D., Cairns, I.H., Emrich, D., Lobzin, V., et al.: 2011, First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array prototype. Astrophys. J. Lett. 728, L27. ADS .

    Article  ADS  Google Scholar 

  • Payne-Scott, R.: 1949, Bursts of solar radiation at metre wavelengths. Aust. J. Sci. Res., Ser. A 2, 214. ADS .

    ADS  Google Scholar 

  • Price, D.C.: 2016, Spectrometers and polyphase filterbanks in radio astronomy. arXiv . ADS .

  • Pupillo, G., Naldi, G., Bianchi, G., Mattana, A., Monari, J., Perini, F., Poloni, M., Schiaffino, M., Bolli, P., Lingua, A., Aicardi, I., Bendea, H., Maschio, P., Piras, M., Virone, G., Paonessa, F., Farooqui, Z., Tibaldi, A., Addamo, G., Peverini, O.A., Tascone, R., Wijnholds, S.J.: 2015, Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source. Exp. Astron. 39, 405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Raja, K.S., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2013, Design and performance of a low-frequency cross-polarized log-periodic dipole antenna. Astrophys. J. Suppl. 207(1), 2. stacks.iop.org/ 0067-0049/207/i=1/a=2 .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, I.C., Rajalingam, M.: 2012, High angular resolution radio observations of a coronal mass ejection source region at low frequencies during a solar eclipse. Astrophys. J. 744, 165. ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Narayanan, A.S.: 2011, Low-frequency observations of polarized emission from long-lived non-thermal radio sources in the solar corona. Astrophys. J. 734(1), 39. stacks.iop.org/0004- 637X/734/i=1/a=39 .

    Article  ADS  Google Scholar 

  • Ramesh, R., Shanmugha Sundaram, G.A.: 2001, Occurrence of metric noise storms and the onset of coronal mass ejections in the solar atmosphere. Solar Phys. 202, 355. ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Subramanian, K.R., Sastry, C.V.: 1999, Eclipse observations of compact sources in the outer solar corona. Solar Phys. 185, 77. ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Sundararajan, M.S., Sastry, C.V.: 2006, The 1024 channel digital correlator receiver of the Gauribidanur radioheliograph. Exp. Astron. 21, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Subramanian, K.R., Sundararajan, M.S., Sastry, C.V.: 1998, The Gauribidanur Radioheliograph. Solar Phys. 181, 439. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., SundaraRajan, M.S., Barve, I.V., Sastry, C.V.: 2008, A low-frequency (\(30\,\mbox{--}\,110~\mbox{MHz}\)) antenna system for observations of polarized radio emission from the solar corona. Solar Phys. 253(1), 319. DOI .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Barve, I.V., Beeharry, G.K., Rajasekara, G.N.: 2010, Radio observations of weak energy releases in the solar corona. Astrophys. J. Lett. 719, L41. ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Sasikumar Raja, K., Kathiravan, C., Satya Narayanan, A.: 2013, Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762, 89. ADS .

    Article  ADS  Google Scholar 

  • Ryle, M.: 1948, The generation of radio-frequency radiation in the sun. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 195(1040), 82. www.jstor.org/stable/98304 .

    Article  ADS  MATH  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R.: 2013, Low-frequency observations of transient quasi-periodic radio emission from the solar atmosphere. Astrophys. J. 775, 38. ADS .

    Article  ADS  Google Scholar 

  • Sault, R.J., Hamaker, J.P., Bregman, J.D.: 1996, Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. Astron. Astrophys. Suppl. Ser. 117, 149. ADS .

    Article  ADS  Google Scholar 

  • Stewart, R.T., Labrum, N.R.: 1972, Meter-wavelength observations of the solar radio burst storm of August 17 – 22, 1968. Solar Phys. 27, 192. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sundaram, G.A.S., Subramanian, K.R.: 2004, Spectrum of solar Type I continuum noise storm in the 50 – 80 MHz band and plasma characteristics in the associated source region. Astrophys. J. 605, 948. DOI . ADS .

    Article  ADS  Google Scholar 

  • Swarup, G., Stone, P.H., Maxwell, A.: 1960, The association of solar radio bursts with flares and prominences. Astrophys. J. 131, 725. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thejappa, G.: 1991, A self-consistent model for the storm radio emission from the sun. Solar Phys. 132, 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, A.R., Moran, J.M., Swenson, G.W.: 2001, Interferometry and Synthesis in Radio Astronomy, 2nd edn., Wiley-VCH, Weinheim. cds.cern.ch/record/1320565 .

    Book  Google Scholar 

  • Tingay, S., Goeke, R., Bowman, J.D., Emrich, D., Ord, S., Mitchell, D.A., Morales, M.F., Booler, T., Crosse, B., Wayth, R., et al.: 2013, The Murchison Widefield Array: The Square Kilometre Array precursor at low radio frequencies. Publ. Astron. Soc. Austral. 30, e007.

    Article  ADS  Google Scholar 

  • Vaidyanathan, P.P.: 1993, Multirate Systems and Filter Banks, 1, Prentice Hall, Upper Saddle River. 0-13-605718-7.

    MATH  Google Scholar 

  • van Haarlem, M., Wise, M., Gunst, A., Heald, G., McKean, J., Hessels, J., de Bruyn, A., Nijboer, R., Swinbank, J., Fallows, R., et al.: 2013, Lofar: the low-frequency array. Astron. Astrophys. 556, 2.

    Article  Google Scholar 

  • Wild, J.P.: 1951, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. IV. Enhanced radiation. Aust. J. Sci. Res., Ser. A 4, 36. ADS .

    ADS  Google Scholar 

  • Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Austral. J. Sci. Res., Ser. A 3, 387. ADS .

    ADS  Google Scholar 

  • Zlobec, P.: 1971, Polarization of type I bursts. In: Abrami, A. (ed.) CESRA-2, Comm. European Solar Radio Astron. 2, 101. ADS .

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank the workshop staff in the Gauribidanur Observatory for assistance in the building of the array, and the observers there for effectively carrying out the observations reported in this work. We thank the referee for their comments that helped us to present the results in a better manner. V. Mugundhan would like to thank the CASPER consortium for providing open-source signal-processing libraries, M. Rajesh for providing the dual-frequency images with the GRAPH, K. Hariharan for fruitful discussions, and Anshu Kumari for thoroughly proofreading the manuscript. The portion of work carried out by A. Hegde was during her time as an Indian Academy of Sciences Summer Intern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mugundhan.

Ethics declarations

Disclosure of Potential Conflicts of interest

We declare that there are no conflicts of interest for the work presented here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugundhan, V., Ramesh, R., Kathiravan, C. et al. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies. Sol Phys 293, 41 (2018). https://doi.org/10.1007/s11207-018-1260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1260-2

Keywords

Navigation