Flare Prediction Using Photospheric and Coronal Image Data

Abstract

The precise physical process that triggers solar flares is not currently understood. Here we attempt to capture the signature of this mechanism in solar-image data of various wavelengths and use these signatures to predict flaring activity. We do this by developing an algorithm that i) automatically generates features in 5.5 TB of image data taken by the Solar Dynamics Observatory of the solar photosphere, chromosphere, transition region, and corona during the time period between May 2010 and May 2014, ii) combines these features with other features based on flaring history and a physical understanding of putative flaring processes, and iii) classifies these features to predict whether a solar active region will flare within a time period of \(T\) hours, where \(T = 2 \mbox{ and }24\). Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We find that when optimizing for the True Skill Score (TSS), photospheric vector-magnetic-field data combined with flaring history yields the best performance, and when optimizing for the area under the precision–recall curve, all of the data are helpful. Our model performance yields a TSS of \(0.84 \pm0.03\) and \(0.81 \pm0.03\) in the \(T = 2\)- and 24-hour cases, respectively, and a value of \(0.13 \pm0.07\) and \(0.43 \pm0.08\) for the area under the precision–recall curve in the \(T=2\)- and 24-hour cases, respectively. These relatively high scores are competitive with previous attempts at solar prediction, but our different methodology and extreme care in task design and experimental setup provide an independent confirmation of these results. Given the similar values of algorithm performance across various types of models reported in the literature, we conclude that we can expect a certain baseline predictive capacity using these data. We believe that this is the first attempt to predict solar flares using photospheric vector-magnetic field data as well as multiple wavelengths of image data from the chromosphere, transition region, and corona, and it points the way towards greater data integration across diverse sources in future work.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.a., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI .

    ADS  Article  Google Scholar 

  2. Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. DOI . ADS .

    ADS  Article  Google Scholar 

  3. Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14(1), 2. DOI .

    ADS  Article  Google Scholar 

  4. Bishop, C.M.: 2006, Pattern Recognition and Machine Learning, Springer, New York.

    Google Scholar 

  5. Bloomfield, D.S., Higgins, P.a., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. 747, L41. DOI .

    ADS  Article  Google Scholar 

  6. Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data and a machine learning algorithm. Astrophys. J. 798, 135. DOI .

    ADS  Article  Google Scholar 

  7. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI .

    ADS  Article  Google Scholar 

  8. Boucheron, L.E., Al-Ghraibah, A., McAteer, R.T.J.: 2015, Prediction of solar flare size and time-to-flare using support vector machine regression. Astrophys. J. 812, 51. DOI . ADS .

    ADS  Article  Google Scholar 

  9. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26(6), 627. DOI .

    ADS  Article  Google Scholar 

  10. Cho, Y., Saul, L.K.: 2009, Kernel methods for deep learning. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Adv Neural Info Proc Sys, 342.

    Google Scholar 

  11. Crown, M.D.: 2012, Validation of the NOAA Space Weather Prediction Center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 10, S06006. DOI . ADS .

    ADS  Article  Google Scholar 

  12. Falconer, D.A., Moore, R.L., Barghouty, A.F., Khazanov, I.: 2012, Prior flaring as a complement to free magnetic energy for forecasting solar eruptions. Astrophys. J. 757, 32. DOI . ADS .

    ADS  Article  Google Scholar 

  13. Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: 2012, Global forces in eruptive solar flares: the Lorentz force acting on the solar atmosphere and the solar interior. Solar Phys. 277, 59. DOI . ADS .

    ADS  Article  Google Scholar 

  14. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI . ADS .

    ADS  Article  Google Scholar 

  15. Gabor, D.: 1947, Theory of communication. J. Inst. Electr. Eng., Part I, Gen. 94(73), 58. DOI .

    Google Scholar 

  16. Garcia, H.A.: 1994, Temperature and emission measure from GOES soft X-ray measurements. Solar Phys. 154, 275. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI . ADS .

    ADS  Article  Google Scholar 

  18. Hanser, F.A., Sellers, F.B.: 1996, Design and calibration of the goes-8 solar X-ray sensor: the XRS. Proc. SPIE 2812, 344. DOI .

    ADS  Article  Google Scholar 

  19. Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Solar Phys. 289, 3483. DOI .

    ADS  Article  Google Scholar 

  20. Jing, J., Song, H., Abramenko, V., Tan, C., Wang, H.: 2006, The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. Astrophys. J. 644, 1273. DOI . ADS .

    ADS  Article  Google Scholar 

  21. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: 2017, Occupy the cloud: distributed computing for the 99%. In: Proc. 2017 Symp. Cloud Computing, 445. ACM, New York.

    Google Scholar 

  22. Kamarainen, J.K., Kyrki, V., Kälviäinen, H.: 2006, Invariance properties of Gabor filter-based features – overview and applications. IEEE Trans. Image Process. 15(5), 1088. DOI .

    ADS  Article  Google Scholar 

  23. Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595(2), 1296. DOI .

    ADS  Article  Google Scholar 

  24. Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173. DOI . ADS .

    ADS  Article  Google Scholar 

  25. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: 2014, Convolutional kernel networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Adv. Neural Info. Proc. Sys., 27, 2627.

    Google Scholar 

  27. Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723(1), 634. DOI .

    ADS  Article  Google Scholar 

  28. Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: the ‘minimum’ energy solution. Solar Phys. 155, 235. DOI . ADS .

    ADS  Article  Google Scholar 

  29. SunPy Community, Mumford, S.J., Christe, S., Pérez-Suárez, D., Ireland, J., Shih, A.Y., Inglis, A.R., Liedtke, S., Hewett, R.J., Mayer, F., Hughitt, K., Freij, N., Meszaros, T., Bennett, S.M., Malocha, M., Evans, J., Agrawal, A., Leonard, A.J., Robitaille, T.P., Mampaey, B., Campos-Rozo, J.I., Kirk, M.S.: 2015, SunPy – Python for solar physics. Comput. Sci. Discov. 8(1), 014009. DOI . ADS .

    Article  Google Scholar 

  30. Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: 2017, Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys. J. 835, 156. DOI . ADS .

    ADS  Article  Google Scholar 

  31. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    ADS  Article  Google Scholar 

  32. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI . ADS .

    ADS  Article  Google Scholar 

  33. Rahimi, A., Recht, B.: 2008, Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Adv. Neural Information Processing Systems, 20, 1177.

    Google Scholar 

  34. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    ADS  Article  Google Scholar 

  35. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI . ADS .

    ADS  Article  Google Scholar 

  36. Schwenn, R.: 2006, Space weather: the solar perspective. Living Rev. Solar Phys. 3, 2. DOI . ADS .

    ADS  Article  Google Scholar 

  37. Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: 2009, Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254, 101. DOI .

    ADS  Article  Google Scholar 

  38. Su, Y., Golub, L., Van Ballegooijen, A.A.: 2007, A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606. DOI . ADS .

    ADS  Article  Google Scholar 

  39. Sudol, J.J., Harvey, J.W.: 2005, Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635, 647. DOI . ADS .

    ADS  Article  Google Scholar 

  40. Sun, X.: 2013, On the coordinate system of Space-Weather HMI Active Region Patches (SHARPs): a technical note. arXiv . ADS .

  41. Turmon, M., Jones, H.P., Malanushenko, O.V., Pap, J.M.: 2010, Statistical feature recognition for multidimensional solar imagery. Solar Phys. 262, 277. DOI . ADS .

    ADS  Article  Google Scholar 

  42. Welsch, B.T., Li, Y., Schuck, P.W., Fisher, G.H.: 2009, What is the relationship between photospheric flow fields and solar flares? Astrophys. J. 705, 821. DOI . ADS .

    ADS  Article  Google Scholar 

  43. Wheatland, M.S.: 2004, A Bayesian approach to solar flare prediction. Astrophys. J. 609(2), 17. DOI .

    Article  Google Scholar 

  44. Woodcock, F.: 1976, The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Weather Rev. 104, 1209. DOI . ADS .

    ADS  Article  Google Scholar 

  45. Yu, D., Huang, X., Wang, H., Cui, Y.: 2009, Short-term solar flare prediction using a sequential supervised learning method. Solar Phys. 255, 91. DOI . ADS .

    ADS  Article  Google Scholar 

  46. Yuan, Y., Shih, F.Y., Jing, J., Wang, H.-M.: 2010, Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10, 785. DOI . ADS .

    ADS  Article  Google Scholar 

  47. Zirin, H., Wang, H.: 1993, Narrow lanes of transverse magnetic field in sunspots. Nature 363, 426. DOI . ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The data used here are courtesy of the GOES team and the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) science teams of the NASA Solar Dynamics Observatory. This work was supported by NASA Grant NAS5-02139 (HMI), and in part by DHS Award HSHQDC-16-3-00083, NSF CISE Expeditions Award CCF-1139158, DOE Award SN10040 DE-SC0012463, and DARPA XData Award FA8750-12-2-0331, and gifts from Amazon Web Services, Google, IBM, SAP, The Thomas and Stacey Siebel Foundation, Apple Inc., Arimo, Blue Goji, Bosch, Cisco, Cray, Cloudera, Ericsson, Facebook, Fujitsu, HP, Huawei, Intel, Microsoft, Mitre, Pivotal, Samsung, Schlumberger, Splunk, State Farm and VMware. B. Recht is supported by NSF award CCF-1359814, ONR awards N00014-14-1-0024 and N00014-17-1-2191, the DARPA Fundamental Limits of Learning (Fun LoL) Program, a Sloan Research Fellowship, and a Google Faculty Award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Jonas.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jonas, E., Bobra, M., Shankar, V. et al. Flare Prediction Using Photospheric and Coronal Image Data. Sol Phys 293, 48 (2018). https://doi.org/10.1007/s11207-018-1258-9

Download citation

Keywords

  • Flare History
  • Photospheric Vector Magnetic Field
  • Solar Image Data
  • Solar Dynamics Observatory (SDO)
  • Flare Activity