Solar Physics

, 293:36 | Cite as

High-resolution Observations of H\(\alpha\) Spectra with a Subtractive Double Pass

  • C. Beck
  • R. Rezaei
  • D. P. Choudhary
  • S. Gosain
  • A. Tritschler
  • R. E. Louis
Article

Abstract

High-resolution imaging spectroscopy in solar physics has relied on Fabry–Pérot interferometers (FPIs) in recent years. FPI systems, however, become technically challenging and expensive for telescopes larger than the 1 m class. A conventional slit spectrograph with a diffraction-limited performance over a large field of view (FOV) can be built at much lower cost and effort. It can be converted into an imaging spectro(polari)meter using the concept of a subtractive double pass (SDP). We demonstrate that an SDP system can reach a similar performance as FPI-based systems with a high spatial and moderate spectral resolution across a FOV of \(100^{\prime\prime} \times100^{\prime \prime}\) with a spectral coverage of 1 nm. We use H\(\alpha\) spectra taken with an SDP system at the Dunn Solar Telescope and complementary full-disc data to infer the properties of small-scale superpenumbral filaments. We find that the majority of all filaments end in patches of opposite-polarity fields. The internal fine-structure in the line-core intensity of H\(\alpha\) at spatial scales of about 0\(.\!\!^{\prime \prime }\)5 exceeds that in other parameters such as the line width, indicating small-scale opacity effects in a larger-scale structure with common properties. We conclude that SDP systems in combination with (multi-conjugate) adaptive optics are a valid alternative to FPI systems when high spatial resolution and a large FOV are required. They can also reach a cadence that is comparable to that of FPI systems, while providing a much larger spectral range and a simultaneous multi-line capability.

Keywords

Sun: chromosphere Techniques: spectroscopic Line: profiles 

Notes

Acknowledgements

This paper is dedicated to the memory of M. Bradford (NSO) and J. Staiger (KIS). The Dunn Solar Telescope at Sacramento Peak/NM was operated by the National Solar Observatory (NSO). The NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation (NSF). This work utilizes GONG and SOLIS data3 obtained by the NSO Integrated Synoptic Program (NISP). HMI/AIA data are courtesy of NASA/SDO and the HMI/AIA science team. R.R. acknowledges financial support by the Spanish Ministry of Economy and Competitiveness through project AYA2014-60476-P. D.P.C. acknowledges partial support through NSF grant AGS 1413686. The Center of Excellence in Space Sciences India is funded by the Ministry of Human Resource Development, Government of India.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2018_1252_MOESM1_ESM.mp4 (1014 kb)
(MP4 1014 kB)
11207_2018_1252_MOESM2_ESM.mp4 (2 mb)
(MP4 2.0 MB)

References

  1. Asensio Ramos, A., de la Cruz Rodríguez, J., Martínez González, M.J., Socas-Navarro, H.: 2017, Inference of the chromospheric magnetic field orientation in the Ca ii 8542 Å line fibrils. Astron. Astrophys. 599, A133. DOI. ADS. CrossRefGoogle Scholar
  2. Beck, C., Choudhary, D.P., Rezaei, R.: 2014, A three-dimensional view of the thermal structure in a super-penumbral canopy. Astrophys. J. 788, 183. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Beck, C., Rezaei, R., Puschmann, K.G.: 2013a, The energy of waves in the photosphere and lower chromosphere. III. Inversion setup for Ca II H spectra in local thermal equilibrium. Astron. Astrophys. 549, A24. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Beck, C., Rezaei, R., Puschmann, K.G.: 2013b, The energy of waves in the photosphere and lower chromosphere. IV. Inversion results of Ca II H spectra. Astron. Astrophys. 553, A73. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Beck, C., Bellot Rubio, L.R., Schlichenmaier, R., Sütterlin, P.: 2007, Magnetic properties of G-band bright points in a sunspot moat. Astron. Astrophys. 472, 607. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Beck, C., Choudhary, D.P., Rezaei, R., Louis, R.E.: 2015, Fast inversion of solar Ca II spectra. Astrophys. J. 798, 100. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Beck, C., Rezaei, R., Puschmann, K.G., Fabbian, D.: 2016, Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures? Solar Phys. 291, 2281. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cabrera Solana, D., Bellot Rubio, L.R., Beck, C., del Toro Iniesta, J.C.: 2006, Evershed clouds as precursors of moving magnetic features around sunspots. Astrophys. J. Lett. 649, L41. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Cavallini, F.: 2006, IBIS: a new post-focus instrument for solar imaging spectroscopy. Solar Phys. 236, 415. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Dunn, R.B.: 1969, Sacramento Peak’s new solar telescope. Sky Telesc. 38, 368. ADS. ADSGoogle Scholar
  11. Dunn, R.B., Smartt, R.N.: 1991, High resolution telescopes at the National Solar Observatory. Adv. Space Res. 11, 139. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gosain, S., Venkatakrishnan, P., Venugopalan, K.: 2006, Design and status of Solar Vector Magnetograph (SVM-I) at Udaipur Solar Observatory. J. Astrophys. Astron. 27, 285. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Harvey, K., Harvey, J.: 1973, Observations of moving magnetic features near sunspots. Solar Phys. 28, 61. ADS. ADSCrossRefGoogle Scholar
  15. Heinzel, P., Schmieder, B., Mein, N., Gunár, S.: 2015, Understanding the Mg II and H\(\alpha\) spectra in a highly dynamical solar prominence. Astrophys. J. Lett. 800, L13. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Jacquinot, P.: 1954, The luminosity of spectrometers with prisms, gratings, or Fabry Perot etalons. J. Opt. Soc. Am. 44, 761. ADS. ADSCrossRefGoogle Scholar
  17. Katsukawa, Y., Orozco Suárez, D.: 2012, Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density. Astrophys. J. 758, 139. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Keller, C.U., Harvey, J.W., Giampapa, M.S.: 2003, SOLIS: an innovative suite of synoptic instruments. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 194. DOI. ADS. CrossRefGoogle Scholar
  19. Kentischer, T.J., Schmidt, W., Sigwarth, M., Uexkuell, M.V.: 1998, TESOS, a double Fabry-Perot instrument for solar spectroscopy. Astron. Astrophys. 340, 569. ADS. ADSGoogle Scholar
  20. Kurucz, R.L., Furenlid, I., Brault, J., Testerman, L.: 1984, Solar Flux Atlas from 296 to 1300 nm, National Solar Obs., Sunspot. ADS. Google Scholar
  21. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  22. López Ariste, A., Le Men, C., Gelly, B.: 2011, Double-pass spectroimaging with spectral multiplexing: TUNIS. Contrib. Astron. Obs. Skaln. Pleso 41, 99. ADS. ADSGoogle Scholar
  23. Ma, L., Zhou, W., Zhou, G., Zhang, J.: 2015, The evolution of arch filament systems and moving magnetic features around a sunspot. Astron. Astrophys. 583, A110. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Mein, P.: 1977, Multi-channel subtractive spectrograph and filament observations. Solar Phys. 54, 45. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Mein, P.: 1991, Solar 2D spectroscopy – a new MSDP instrument. Astron. Astrophys. 248, 669. ADS. ADSGoogle Scholar
  26. Mein, P.: 1995, Solar imaging spectroscopy: multichannel subtractive double pass instruments. In: Comte, G., Marcelin, M. (eds.) IAU Colloq. 149: Tridimensional Optical Spectroscopic Methods in Astrophysics, Astronomical Society of the Pacific Conference Series 71, 350. ADS. Google Scholar
  27. Mein, P.: 2002, The MSDP of THEMIS: capabilities, first results and prospects. Astron. Astrophys. 381, 271. ADS. ADSCrossRefGoogle Scholar
  28. Mein, P., Blondel, M.: 1972, A substractive double pass spectrograph for solar observations. Solar Phys. 27, 489. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Mein, P., Mein, N., Bommier, V.: 2009, Fast imaging spectroscopy with MSDP spectrometers. Vector magnetic maps with THEMIS/MSDP. Astron. Astrophys. 507, 531. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Öhman, Y.: 1950, The use of Savart fringes in the observation of Zeeman effects in sunspots. Astrophys. J. 111, 362. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Pietarila, A., Harvey, J.W.: 2013, Ca II 854.2 nm bisectors and circumfacular regions. Astrophys. J. 764, 153. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Puschmann, K.G., Beck, C.: 2011, Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data. Astron. Astrophys. 533, A21. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Puschmann, K.G., Kneer, F., Seelemann, T., Wittmann, A.D.: 2006, The new Göttingen Fabry–Pérot spectrometer for two-dimensional observations of the Sun. Astron. Astrophys. 451, 1151. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Puschmann, K.G., Denker, C., Kneer, F., Al Erdogan, N., Balthasar, H., Bauer, S.M., Beck, C., Bello González, N., Collados, M., Hahn, T., Hirzberger, J., Hofmann, A., Louis, R.E., Nicklas, H., Okunev, O., Martínez Pillet, V., Popow, E., Seelemann, T., Volkmer, R., Wittmann, A.D., Woche, M.: 2012, The GREGOR Fabry–Pérot Interferometer. Astron. Nachr. 333, 880. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Reardon, K.P., Cavallini, F.: 2008, Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. the IBIS instrumental profile. Astron. Astrophys. 481, 897. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Sainz Dalda, A., Bellot Rubio, L.R.: 2008, Detection of sea-serpent field lines in sunspot penumbrae. Astron. Astrophys. 481, L21. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Sainz Dalda, A., López Ariste, A.: 2007, Using reduction and inversion tools for THEMIS-MTR data: chromospheric reversals of a moving magnetic feature and an ephemeral region. Mem. Soc. Astron. Ital. 78, 154. ADS. ADSGoogle Scholar
  38. Schad, T.A., Penn, M.J., Lin, H.: 2013, He I vector magnetometry of field-aligned superpenumbral fibrils. Astrophys. J. 768, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 341. ADS. CrossRefGoogle Scholar
  40. Scharmer, G.B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M.G., Kiselman, D., Sütterlin, P., van Noort, M., Lagg, A.: 2008, CRISP spectropolarimetric imaging of penumbral fine structure. Astrophys. J. Lett. 689, L69. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Schmieder, B., Mein, N., Deng, Y., Dumitrache, C., Malherbe, J.-M., Staiger, J., Deluca, E.E.: 2004, Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Phys. 223, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Schmieder, B., Tian, H., Kucera, T., López Ariste, A., Mein, N., Mein, P., Dalmasse, K., Golub, L.: 2014, Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP. Astron. Astrophys. 569, A85. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Stenflo, J.O.: 1968, A new type of magnetograph. Solar Phys. 3, 482. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Tritschler, A., Uitenbroek, H., Reardon, K.: 2008, Evidence for a current sheet above a sunspot umbra. Astrophys. J. Lett. 686, L45. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Tritschler, A., Schmidt, W., Langhans, K., Kentischer, T.: 2002, High-resolution solar spectroscopy with TESOS – upgrade from a double to a triple system. Solar Phys. 211, 17. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • C. Beck
    • 1
  • R. Rezaei
    • 2
    • 3
  • D. P. Choudhary
    • 4
  • S. Gosain
    • 1
  • A. Tritschler
    • 1
  • R. E. Louis
    • 5
  1. 1.National Solar Observatory (NSO)BoulderUSA
  2. 2.Instituto de Astrofísica de Canarias (IAC)La LagunaSpain
  3. 3.Departamento de AstrofísicaUniversidad de La Laguna (ULL)La LagunaSpain
  4. 4.Department of Physics & AstronomyCalifornia State UniversityNorthridgeUSA
  5. 5.Center of Excellence in Space Sciences India (CESSI)Indian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations