Abstract
The solar cycle appears to be remarkably synchronized with the gravitational torques exerted by the tidally dominant planets Venus, Earth and Jupiter. Recently, a possible synchronization mechanism was proposed that relies on the intrinsic helicity oscillation of the current-driven Tayler instability which can be stoked by tidal-like perturbations with a period of 11.07 years. Inserted into a simple \(\alpha \)–\(\Omega \) dynamo model these resonantly excited helicity oscillations led to a 22.14 years dynamo cycle. Here, we assess various alternative mechanisms of synchronization. Specifically we study a simple time-delay model of Babcock–Leighton type dynamos and ask whether periodic changes of either the minimal amplitude for rising toroidal flux tubes or the \(\Omega \) effect could eventually lead to synchronization. In contrast to the easy and robust synchronizability of Tayler–Spruit dynamo models, our answer for those Babcock–Leighton type models is less propitious.
This is a preview of subscription content,
to check access.










Similar content being viewed by others
Notes
The “generous omission” of Mercury, whose tidal effect is nearly the same as that of Earth, but whose 88 days revolution period is often considered as “so short that its influence appears only as an average, non-fluctuating factor…” (Öpik, 1972), might be another argument for skeptics. However, it could also be worthwhile to re-analyze the 50 – 80 years sub-band of the Gleissberg cycle as identified by Ogurtsov et al. (2002) in the light of the 66.4 years period of the four-fold co-alignment of Mercury, Venus, Earth and Jupiter (Verma, 1986).
References
Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI .
Abreu, J.A., Albert, C., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2014, Response to: “Critical analysis of a hypothesis of the planetary tidal influence on solar activity” by S. Poluianov and I. Usoskin. Solar Phys. 289, 2343. DOI .
Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI .
Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the Maunder Minimum. Solar Phys. 181, 237. DOI .
Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307.
Bonanno, A., Guarnieri, F.: 2017, On the possibility of helicity oscillations in the saturation of the Tayler instability. Astron. Nachr. 338, 516. DOI .
Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI .
Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.: 1989, Inferring the sun’s internal angular velocity from observed p-mode frequency splitting. Astrophys. J. 343, 526. DOI .
Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI .
Cameron, R.H., Schüssler, M.: 2013, No evidence for planetary influence on solar activity. Astron. Astrophys. 557, A83. DOI .
Cameron, R.H., Schüssler, M.: 2017, Understanding solar cycle variability. Astrophys. J. 843, 111. DOI .
Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI .
Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI .
Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI .
Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29.
Cionco, R.G., Soon, W.: 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the sun-planets interaction. New Astron. 34, 164. DOI .
Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI .
Dicke, R.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676.
Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949.
Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI .
Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI .
Giesecke, A., Stefani, F., Herault, J.: 2017, Parametric instability in periodically perturbed dynamos. Phys. Rev. Fluids 2, 053701. DOI .
Grandpierre, A.: 1996, On the origin of solar cycle periodicity. Astrophys. Space Sci. 243, 393. DOI .
Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI .
Hazra, S., Passos, D., Nandy, D.: 2014, A stochastically forced time delay solar dynamo model: Self-consistent recovery from a Maunder-like grand minimum necessitates a mean-field alpha-effect. Astrophys. J. 789, 5. DOI .
Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOI
Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, New York.
Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets. NASA/TM-2007-214817, 1.
Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193. DOI .
Kitchatinov, L.L., Rüdiger, G., Küker, M.: 1994, Lambda-quenching as the nonlinearity in stellar-turbulence dynamos. Astron. Astrophys. 292, 125.
Leighton, R.B.: 1964, Transport of magnetic field on the sun. Astrophys. J. 140, 1547. DOI .
Li, K.J., Feng, W., Liang, H.F., Zhan, L.S., Gao, P.X.: 2011, A brief review on the presentation of cycle 24, the first integrated solar cycle in the new millennium. Ann. Geophys. 29, 341. DOI .
Luthardt, L., Rößler, R.: 2017, Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279. DOI .
Malkus, W.V.R., Proctor, M.R.E.: 2017, Macrodynamics of alpha-effect dynamos in rotating fluids. J. Fluid Mech. 67, 417.
McCracken, K.G., Beer, J., Steinhilber, F: 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Solar Phys. 289, 3207. DOI .
Moss, D.L., Sokoloff, D.: 2017, Parity fluctuations in stellar dynamos. Astron. Rep. 61, 878. DOI .
Newton, A.P.L., Kim, E.: 2013, Determining the temporal dynamics of the solar \(\alpha\) effect. Astron. Astrophys. 551, A66. DOI .
Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharev, G.E., Jungner, H.: 2002, Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys. 211, 371. DOI .
Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI .
Okhlopkov, V.P.: 2016, The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity. Moscow Univ. Phys. Bull. 71, 440. DOI .
Öpik, E.: 1972, Solar-planetary tides and sunspots. I. Astron. J. 10, 298.
Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .
Pikovsky, A., Rosenblum, M., Kurths, J.: 2001, Synchronizations: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.
Pipin, V.V., Zhang, H., Sokoloff, D.D., Kuzanyan, K.M., Gao, Y: 2013, The origin of the helicity hemispheric sign rule reversals in the mean-field solar-type dynamo. Mon. Not. Roy. Astron. Soc. 435, 2581. DOI .
Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI .
Poluianov, S., Usoskin, I.: 2014, Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Solar Phys. 289, 2333. DOI .
Richards, M.T., Rogers, M.L., Richards, D.St.P.: 2009, Long-term variability in the length of the solar cycle. Publ. Astron. Soc. Pac. 121, 797. DOI .
Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley-VCH, Berlin.
Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI .
Ruzmaikin, A., Feynman, J.: 2015, The Earth’s climate at minima of centennial Gleissberg cycles. Adv. Space Res. 56, 1590. DOI .
Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .
Scafetta, N.: 2013, Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321. DOI .
Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI .
Scafetta, N., Milani, F., Bianchini, A., Ortolani, S.: 2016, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Sci. Rev. 162, 24. DOI .
Schmitt, D., Schüssler, M., Ferriz Mas, A.: 1996, Intermittent solar activity by an on–off dynamo. Astron. Astrophys. 311, L1.
Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI .
Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293.
Solanki, S.K., Krilova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311. DOI .
Soon, W., Herrera, V.M., Selvaraj, K., Traversi, R., Usoskin, I., Chen, C.A., Lou, J.Y. Kao, S.L., Carter, R.M., Pipin, V., Seven, M., Becagli, S.: 2014, A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth-Sci. Rev. 134, 1. DOI .
Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI .
Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI .
Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Synchronized helicity oscillations: a link between planetary tides and the solar cycle? Solar Phys. 291, 2197. DOI .
Stefani, F., Galindo, V. Giesecke, A., Weber, N., Weier, T.: 2017, The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations. Magnetohydrodynamics 53, 169.
Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI .
Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields – I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI .
Verma, S.D., 1986 Influence of planetary motion and radial alignment of planets on sun. In: Bhatnagar, K.B. Space Dynamics and Celestial Mechanics, Astrophys. Space Sci. Libr., 127, Springer, Berlin 143.
Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI .
Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: Between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI .
Weiss, N.O., Tobias, S.M: 2016, Supermodulation of the Sun’s magnetic activity: The effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI .
Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI .
Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI .
Wolf, R.: 1859, Extract of a letter to Mr. Carrington. Mon. Not. Roy. Astron. Soc. 19, 85. DOI
Wolff, C.L., Patrone, P.N.: 2010, A new way that planets can affect the sun. Solar Phys. 266, 227. DOI .
Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI .
Wood, T.: 2010, The solar tachocline: A self-consistent model of magnetic confinement. Dissertation, University of Cambridge, Cambridge.
Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI .
Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI .
Zaqarashvili, T.V.: 1997, On a possible generation mechanism for the solar cycle. Astrophys. J. 487, 930. DOI .
Zhang, K., Chan, K.H., Zou, J., Liao, X., Schubert, G.: 2003, A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663. DOI .
Acknowledgements
This work was supported by Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) in frame of the Helmholtz alliance LIMTECH.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Disclosure of Potential Conflicts of Interest
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Stefani, F., Giesecke, A., Weber, N. et al. On the Synchronizability of Tayler–Spruit and Babcock–Leighton Type Dynamos. Sol Phys 293, 12 (2018). https://doi.org/10.1007/s11207-017-1232-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-017-1232-y