Skip to main content
Log in

The Temperature – Magnetic Field Relation in Observed and Simulated Sunspots

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (\(g = 3\)) line Fe i 1564.85 nm with a spatial resolution of \(0.5^{\prime\prime}\) obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Notes

  1. See http://download.hao.ucar.edu/pub/rempel/sunspot_models/Fine_Structure/ .

References

  • Abdussamatov, H.I.: 1971, On the magnetic fields and motions in sunspots at different atmospheric levels. Solar Phys. 16, 384. DOI . ADS .

    Article  ADS  Google Scholar 

  • Balthasar, H., Schmidt, W.: 1993, Polarimetry and spectroscopy of a simple sunspot. II: On the height and temperature dependence of the magnetic field. Astron. Astrophys. 279, 243. ADS .

    ADS  Google Scholar 

  • Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: 2012, The GREGOR adaptive optics system. Astron. Nachr. 333, 863. DOI . ADS .

    Article  ADS  Google Scholar 

  • Borrero, J.M., Ichimoto, K.: 2011, Magnetic structure of sunspots. Living Rev. Solar Phys. 8, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Borrero, J.M., Lites, B.W., Lagg, A., Rezaei, R., Rempel, M.: 2014, Comparison of inversion codes for polarized line formation in MHD simulations. I. Milne-Eddington codes. Astron. Astrophys. 572, A54. DOI . ADS .

    Article  ADS  Google Scholar 

  • Borrero, J.M., Asensio Ramos, A., Collados, M., Schlichenmaier, R., Balthasar, H., Franz, M., Rezaei, R., Kiess, C., Orozco Suárez, D., Pastor, A., Berkefeld, T., von der Lühe, O., Schmidt, D., Schmidt, W., Sigwarth, M., Soltau, D., Volkmer, R., Waldmann, T., Denker, C., Hofmann, A., Staude, J., Strassmeier, K.G., Feller, A., Lagg, A., Solanki, S.K., Sobotka, M., Nicklas, H.: 2016, Deep probing of the photospheric sunspot penumbra: No evidence of field-free gaps. Astron. Astrophys. 596, A2. DOI . ADS .

    Article  Google Scholar 

  • Bruls, J.H., Lites, B.W., Murphy, G.A.: 1991, In: November, L. (ed.) Solar Polarimetry, Proc. 11th Sacramento Peak Workshop, NSO, Sunspot, 444.

    Google Scholar 

  • Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Díaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: The GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gurman, J.B., House, L.L.: 1981, Vector magnetic fields in sunspots. I – Weak-line observations. Solar Phys. 71, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hofmann, A., Arlt, K., Balthasar, H., Bauer, S.M., Bittner, W., Paschke, J., Popow, E., Rendtel, J., Soltau, D., Waldmann, T.: 2012, The GREGOR polarimetric calibration unit. Astron. Nachr. 333, 854. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jaeggli, S.A., Lin, H., Uitenbroek, H.: 2012, On molecular hydrogen formation and the magnetohydrostatic equilibrium of sunspots. Astrophys. J. 745, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jurčák, J., Martínez Pillet, V., Sobotka, M.: 2006, The magnetic canopy above light bridges. Astron. Astrophys. 453, 1079. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kopp, G., Rabin, D.: 1992, A relation between magnetic field strength and temperature in sunspots. Solar Phys. 141, 253. DOI . ADS .

    Article  ADS  Google Scholar 

  • Langhans, K., Scharmer, G.B., Kiselman, D., Löfdahl, M.G., Berger, T.E.: 2005, Inclination of magnetic fields and flows in sunspot penumbrae. Astron. Astrophys. 436, 1087. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leonard, T., Choudhary, D.P.: 2008, Intensity and magnetic field distribution of sunspots. Solar Phys. 252, 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Livingston, W.: 2002, Sunspots observed to physically weaken in 2000 – 2001. Solar Phys. 207, 41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Maltby, P., Avrett, E.H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez Pillet, V., Vázquez, M.: 1990, On the continuum intensity-magnetic field relation along the decay phase of sunspots. Astrophys. Space Sci. 170, 75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez Pillet, V., Vázquez, M.: 1993, The continuum intensity-magnetic field relation in sunspot umbrae. Astron. Astrophys. 270, 494. ADS .

    ADS  Google Scholar 

  • Mathew, S.K., Solanki, S.K., Lagg, A., Collados, M., Borrero, J.M., Berdyugina, S.: 2004, Thermal-magnetic relation in a sunspot and a map of its Wilson depression. Astron. Astrophys. 422, 693. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muller, R.: 1973, Étude photométrique des structures fines de la pénombre d’une tache solaire. Solar Phys. 32, 409. DOI . ADS .

    Article  ADS  Google Scholar 

  • Penn, M.J., Walton, S., Chapman, G., Ceja, J., Plick, W.: 2003, Temperature dependence of molecular line strengths and Fei 1565 nm Zeeman splitting in a sunspot. Solar Phys. 213, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pratt, W.K.: 1978, Digital Image Processing, Wiley, New York. ADS .

    MATH  Google Scholar 

  • Rempel, M.: 2012, Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rezaei, R., Beck, C., Schmidt, W.: 2012, Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife infrared polarimeter. Astron. Astrophys. 541, A60. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rüedi, I., Solanki, S.K., Livingston, W., Harvey, J.: 1995, Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50 μm. Astron. Astrophys. Suppl. 113, 91. ADS .

    ADS  Google Scholar 

  • Ruiz Cobo, B., del Toro Iniesta, J.C.: 1992, Inversion of Stokes profiles. Astrophys. J. 398, 375. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI . ADS .

    Article  ADS  Google Scholar 

  • Socas-Navarro, H., Martínez Pillet, V., Sobotka, M., Vázquez, M.: 2004, The thermal and magnetic structure of umbral dots from the inversion of high-resolution full Stokes observations. Astrophys. J. 614, 448. DOI . ADS .

    Article  ADS  Google Scholar 

  • Solanki, S.K., Rüedi, I.K., Livingston, W.: 1992, Infrared lines as probes of solar magnetic features. II – Diagnostic capabilities of Fe I 15648.5 A and 15652.9 A. Astron. Astrophys. 263, 312. ADS .

    ADS  Google Scholar 

  • Solanki, S.K., Walther, U., Livingston, W.: 1993, Infrared lines as probes of solar magnetic features. VI. The thermal-magnetic relation and Wilson depression of a simple sunspot. Astron. Astrophys. 277, 639. ADS .

    ADS  Google Scholar 

  • Stanchfield, D.C.H. II, Thomas, J.H., Lites, B.W.: 1997, The vector magnetic field, Evershed flow, and intensity in a sunspot. Astrophys. J. 477, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thomas, J.H., Weiss, N.O.: 2008, Sunspots and Starspots, Cambridge University Press, Cambridge. ADS .

    Book  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. 45, 635. DOI . ADS .

    Article  ADS  Google Scholar 

  • Watson, F.T., Penn, M.J., Livingston, W.: 2014, A multi-instrument analysis of sunspot umbrae. Astrophys. J. 787, 22. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant 14-04338S of the Czech Science Foundation, the FP-7 Capacities Project No. 312495 SOLARNET, and the institutional support RVO:67985815 of the Czech Academy of Sciences. R.R. acknowledges financial support by the Spanish Ministry of Economy and Competitiveness through the project AYA2014-60476-P. We thank J.M. Borrero for synthetic spectra computed in the frame of the international working group Extracting Information from Spectropolarimetric Observations: Comparison of Inversion Codes at the International Space Science Institute (ISSI) in Bern (Switzerland). We use data provided by M. Rempel at the National Center for Atmospheric Research (NCAR). The National Center for Atmospheric Research is sponsored by the National Science Foundation. The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute of Astrophysics Göttingen, and the Max Planck Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Czech Academy of Sciences. We thank the referee for the comments that led to a substantial improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Sobotka.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobotka, M., Rezaei, R. The Temperature – Magnetic Field Relation in Observed and Simulated Sunspots. Sol Phys 292, 188 (2017). https://doi.org/10.1007/s11207-017-1220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1220-2

Keywords

Navigation