Skip to main content
Log in

Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 – 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions (i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry (i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 111, A07S08. DOI .

    Google Scholar 

  • Bendat, J.S., Piersol, A.G.: 1971, Measurement and Analysis of Random Data, Wiley–Interscience, New York.

    MATH  Google Scholar 

  • Berdichevsky, D.B., Szabo, A., Lepping, R.P., Viñas, A.F., Mariani, F.: 2000, Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by wind over its first 2.5 years. J. Geophys. Res. 105, 27289. DOI .

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2010, Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU. J. Geophys. Res. 115, A10101. DOI .

    ADS  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI .

    Article  ADS  Google Scholar 

  • Cid, C., Palacios, J., Saiz, E., Guerrero, A., Cerrato, Y.: 2014, On extreme geomagnetic storms. J. Space Weather Space Clim. 4, A28. DOI .

    Article  ADS  Google Scholar 

  • Dryer, M.: 1994, Interplanetary studies: Propagation of disturbances between the Sun and the magnetosphere. Space Sci. Rev. 67(3), 363. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Clua de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun–Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci. 2, 13. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Makela, P.: 2016, Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res., Space Phys. 120, 9221. DOI .

    Article  ADS  Google Scholar 

  • Hietala, H., Kilpua, E.K.J., Turner, D.L., Angelopoulos, V.: 2014, Depleting effects of ICME-driven sheath regions on the outer electron radiation belt. Geophys. Res. Lett. 41, 2258. DOI .

    Article  ADS  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J.: 2004, Importance of postshock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann. Geophys. 22, 1729. DOI .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008, Stream interactions and interplanetary coronal mass ejections at 0.72 AU. Solar Phys. 249, 85. DOI .

    Article  ADS  Google Scholar 

  • Katus, R.M., Liemohn, M.W., Ionides, E.L., Ilie, R., Welling, D., Sarno-Smith, L.K.: 2015, Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J. Geophys. Res. Space Physics 120(11), 9221. DOI .

    Article  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2004, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110(A2), A02209. DOI .

    Google Scholar 

  • Kilpua, E.K.J., Hietala, H., Turner, D.L., Koskinen, H.E.J., Pulkkinen, T.I., Rodriguez, J.V., Reeves, G.D., Claudepierre, S.G., Spence, H.E.: 2015, Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42, 3076. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 AU for the quiet solar phase: WIND observations. Solar Phys. 212, 425. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C.: 2017, Average magnetic field magnitude profiles of wind magnetic clouds as a function of closest approach to the clouds’ axes and comparison to model. Solar Phys. 292, 27. DOI .

    Article  ADS  Google Scholar 

  • Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res. 92(11), 189. 194. DOI .

    Google Scholar 

  • Mitsakou, E., Moussas, X.: 2014, Statistical study of ICMEs and their sheaths during solar cycle 23 (1996 – 2008). Solar Phys. 289, 3137. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100(A12), 23397. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02. DOI .

    Google Scholar 

  • Russell, C.T., McPherron, R.L., Burton, R.K.: 1974, On the cause of magnetic storms. J. Geophys. Res. 79, 1105. DOI .

    Article  ADS  Google Scholar 

  • Thatcher, L.J., Müller, H.-R.: 2011, Statistical investigation of hourly OMNI solar wind data. J. Geophys. Res. 116, A12107. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01. DOI .

    ADS  Google Scholar 

  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Horbury, T., Kilchenmann, A., Richardson, I.G., Richardson, J.D., Riley, P., Rodriguez, L., Von Steiger, R., Wurz, P., Zurbuchen, T.H.: 2006, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123(1–3), 177. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys. 290(4), 1243. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Yermolaev, M.Yu.: 2006, Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res. 37(6), 1175. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Yermolaev, M.Yu.: 2010, Solar and interplanetary sources of geomagnetic storms: space weather aspects. Izv., Atmos. Ocean. Phys. 46(7), 799.

    Article  Google Scholar 

  • Yermolaev, Yu.I., Yermolaev, M.Yu., Nikolaeva, N.S., Lodkina, L.G.: 2007, Interplanetary conditions for CIR-induced and MC-induced geomagnetic storms. Bulg. J. Phys. 34, 128.

    Google Scholar 

  • Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2009, Catalog of large-scale solar wind phenomena during 1976 – 2000. Cosm. Res. 47(2), 81. Eng. trans. Kosm. Issled., 47(2), 99 – 113. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2010a, Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 28, 2177. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2010b, Large-scale solar wind structures: occurrence rate and geoeffectiveness. In: Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 648. DOI .

    Google Scholar 

  • Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117, A00L07. DOI .

    ADS  Google Scholar 

  • Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu.: 2013, Occurrence rate of extreme magnetic storms. J. Geophys. Res., Space Phys. 118, 4760. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Y.: 2015, Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis. J. Geophys. Res. Space Physics 120(9), 7494. DOI .

    Article  Google Scholar 

  • Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu., Riazantseva, M.O.: 2017, Some problems of identification of large-scale solar wind types and their roles in physics of the magnetosphere. Cosm. Res. 55(3), 178. DOI . Eng. Trans. Kosm. Issled., 55(3), 2017, 189–200.

    Article  Google Scholar 

  • Yokoyama, N., Kamide, Y.: 1997, Statistical nature of geomagnetic storms. J. Geophys. Res. 102(A7), 14215. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst \(<{-}100\ \text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI .

    ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1–3), 31. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the OMNI database team for the opportunity to use data obtained from GSFC/SPDF OMNIWeb ( http://omniweb.gsfc.nasa.gov ). YY is grateful to the SCOSTEP ”Variability of the Sun and Its Terrestrial Impact” (VarSITI) program for support of his participation in the workshop “International Study of Earth-Affecting Solar Transients (ISEST)/MiniMax” in Mexico City, Mexico, 26 – 30 October 2015. This work was supported by the Russian Science Foundation, project 16-12-10062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Yermolaev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

N.S. Nikolaeva is deceased.

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S. et al. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta. Sol Phys 292, 193 (2017). https://doi.org/10.1007/s11207-017-1205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1205-1

Keywords

Navigation