We'd like to understand how you use our websites in order to improve them. Register your interest.

GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors


The conventional definition of ground-level enhancement (GLE) events requires a detection of solar energetic particles (SEP) by at least two differently located neutron monitors. Some places are exceptionally well suitable for ground-based detection of SEP – high-elevation polar regions with negligible geomagnetic and reduced atmospheric energy/rigidity cutoffs. At present, there are two neutron-monitor stations in such locations on the Antarctic plateau: SOPO/SOPB (at Amundsen–Scott station, 2835 m elevation), and DOMC/DOMB (at Concordia station, 3233 m elevation). Since 2015, when the DOMC/DOMB station started continuous operation, a relatively weak SEP event that was not detected by sea-level neutron-monitor stations was registered by both SOPO/SOPB and DOMC/DOMB, and it was accordingly classified as a GLE. This would lead to a distortion of the homogeneity of the historic GLE list and the corresponding statistics. To address this issue, we propose to modify the GLE definition so that it maintains the homogeneity: A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors, including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s). Relatively weak SEP events registered only by high-altitude polar neutron monitors, but with no response from cosmic-ray stations at sea level, can be classified as sub-GLEs.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2


  1. Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., et al.: 2015, Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 114, 171103. DOI .

  2. Atwell, W., Tylka, A.J., Dietrich, W., Rojdev, K., Matzkind, C.: 2015, Sub-GLE Solar Particle Events and the Implications for Lightly-Shielded Systems Flown During an Era of Low Solar Activity. In: Int. Conf. Environ. Sys., Lunar Planet. Sci. Conf. Proc. .

  3. Clem, J.M., Dorman, L.I.: 2000, Neutron monitor response functions. Space Sci. Rev. 93, 335. DOI . ADS .

  4. Dorman, L.: 2004, Cosmic rays in the Earth’s atmosphere and underground, Kluwer Academic, Dordrecht. 1-4020-2071-6.

  5. Evenson, P., Bieber, J., Clem, J., Pyle, R.: 2011, South Pole Neutron Monitor Lives Again. In: Proc. Int. Cosmic Ray Conf. 11, 459. DOI . ADS .

  6. Flückiger, E.O., Moser, M.R., Pirard, B., Bütikofer, R., Desorgher, L.: 2008, A parameterized neutron monitor yield function for space weather applications. In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Nellen, L., Sánchez, F.A., Valdés-Galicia, J.F. (eds.) Proc. 30th Int. Cosmic Ray Conf. 1, 289. ADS .

  7. Forbush, S.E.: 1946, Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun. Phys. Rev. 70, 771. DOI . ADS .

  8. Forbush, S.E., Stinchcomb, T.B., Schein, M.: 1950, The Extraordinary Increase of Cosmic-Ray Intensity on November 19, 1949. Phys. Rev. 79, 501. DOI . ADS .

  9. Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66, 104. DOI . ADS .

  10. Grieder, P.K.F.: 2001, Cosmic Rays at Earth, Elsevier Science, Amsterdam. ADS .

  11. Mishev, A.L., Kocharov, L.G., Usoskin, I.G.: 2014, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res., Space Phys. 119(2), 670. DOI .

  12. Mishev, A., Poluianov, S., Usoskin, I.: 2017, Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J. Space Weather Space Clim. 7, A28. DOI .

  13. Mishev, A., Usoskin, I.: 2016, Analysis of the Ground-Level Enhancements on 14 July 2000 and 13 December 2006 Using Neutron Monitor Data. Solar Phys. 291, 1225. DOI . ADS .

  14. Nevalainen, J., Usoskin, I., Mishev, A.: 2013, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52(1), 22. DOI .

  15. Picozza, P., Galper, A.M., Castellini, G., Adriani, O., Altamura, G., Ambriola, M., et al.: 2007, PAMELA – a payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 27(4), 296. DOI .

  16. Poluianov, S., Usoskin, I., Mishev, A., Moraal, H., Kruger, H., Casasanta, G., Traversi, R., Udisti, R.: 2015, Mini Neutron Monitors at Concordia Research Station, Central Antarctica. J. Astron. Space Sci. 32, 281. DOI . ADS .

  17. Raukunen, O., Vainio, R., Tylka, A.J., Dietrich, W.F., Jiggens, P., Heynderickx, D., Dierckxsens, M., Crosby, N., Ganse, U., Siipola, R.: 2017, Two solar proton fluence models based on ground level enhancement observations. J. Space Weather Space Clim., submitted.

  18. Simpson, J.A.: 1990, Astrophysical Phenomena Discovered by Cosmic Ray and Solar Flare Ground Level Events: The Early Years. In: Proc. Int. Cosmic Ray Conf. 12, 187. ADS .

  19. Smart, D.F., Shea, M.A.: 2009, Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv. Space Res. 44(10), 1107. DOI .

  20. Souvatzoglou, G., Mavromichalaki, H., Sarlanis, C., Mariatos, G., Belov, A., Eroshenko, E., Yanke, V.: 2009, Real-time GLE alert in the ANMODAP Center for December 13, 2006. Adv. Space Res. 43(4), 728. Solar Extreme Events: Fundamental Science and Applied Aspects. DOI .

  21. Tylka, A.J., Dietrich, W.F.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proc. 31th Int. Cosmic Ray Conf., Lodz. .

  22. Vainio, R., Raukunen, O., Tylka, A.J., Dietrich, W.F., Afanasiev, A.: 2017, Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron. Astrophys. 604, A47. DOI . ADS .

  23. Vashenyuk, E.V., Balabin, Y.V., Stoker, P.H.: 2007, Responses to solar cosmic rays of neutron monitors of a various design. Adv. Space Res. 40(3), 331. DOI .

Download references


The work was supported by the projects of the Academy of Finland Centre of Excellence ReSoLVE (No. 272157), CRIPA and CRIPA-X (No. 304435), and by the Finnish Antarctic Research Program (FINNARP). We acknowledge Askar Ibragimov for the support of the International GLE database ( ) and are grateful to the worldwide neutron-monitor database ( ), which is a product of an EU Project. We thank Marc Duldig, Erwin Flückiger, John Humble, and Roger Pyle for valuable discussions.

Author information



Corresponding author

Correspondence to S. V. Poluianov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poluianov, S.V., Usoskin, I.G., Mishev, A.L. et al. GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors. Sol Phys 292, 176 (2017).

Download citation


  • Energetic particles