Skip to main content

Advertisement

Log in

Comparative Study of the Three-Dimensional Thermodynamical Structure of the Inner Corona of Solar Minimum Carrington Rotations 1915 and 2081

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using differential emission measure tomography (DEMT) based on time series of EUV images, we carry out a quantitative comparative analysis of the three-dimensional (3D) structure of the electron density and temperature of the inner corona (\(r<1.25\,\mathrm{R}_{\odot}\)) between two specific rotations selected from the last two solar minima, namely Carrington Rotations (CR)1915 and CR-2081. The analysis places error bars on the results because of the systematic uncertainty of the sources. While the results for CR-2081 are characterized by a remarkable north–south symmetry, the southern hemisphere for CR-1915 exhibits higher densities and temperatures than the northern hemisphere. The core region of the streamer belt in both rotations is found to be populated by structures whose temperature decreases with height (called “down loops” in our previous articles). They are characterized by plasma \(\beta\gtrsim1\), and may be the result of the efficient dissipation of Alfvén waves at low coronal heights. The comparative analysis reveals that the low latitudes of the equatorial streamer belt of CR-1915 exhibit higher densities than for CR-2081. This cannot be explained by the systematic uncertainties. In addition, the southern hemisphere of the streamer belt of CR-1915 is characterized by higher temperatures and density scale heights than for CR-2081. On the other hand, the coronal hole region of CR-1915 shows lower temperatures than for CR-2081. The reported differences are in the range \({\approx}\,10\,\mbox{--}\,25\%\), depending on the specific physical quantity and region that is compared, as fully detailed in the analysis. For other regions and/or physical quantities, the uncertainties do not allow assessing the thermodynamical differences between the two rotations. Future investigation will involve a DEMT analysis of other Carrington rotations selected from both epochs, and also a comparison of their tomographic reconstructions with magnetohydrodynamical simulations of the inner corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Notes

  1. See http://solarscience.msfc.nasa.gov/images/Cycle22Cycle23Cycle24big.gif .

  2. See ftp://ftp.swpc.noaa.gov/pub/weekly/RecentIndices.txt .

References

  • Altschuler, M.D., Perry, R.M.: 1972, On determining the electron density distribution of the solar corona from K-coronameter data. Solar Phys. 23, 410. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Boerner, P.: 2011, Solar corona loop studies with the atmospheric imaging assembly. I. Cross-sectional temperature structure. Astrophys. J. 732, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Schrijver, C.J.: 2002, Analytical approximations to hydrostatic solutions and scaling laws of coronal loops. Astrophys. J. 142, 269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Biesecker, D.A., Thompson, B.J., Gibson, S.E., Alexander, D., Fludra, A., Gopalswamy, N., Hoeksema, J.T., Lecinski, A., Strachan, L.: 1999, Synoptic Sun during the first Whole Sun Month Campaign: August 10 to September 8, 1996. J. Geophys. Res. 104, 9679. DOI . ADS .

    Article  ADS  Google Scholar 

  • Butala, M.D., Hewett, R.J., Frazin, R.A., Kamalabadi, F.: 2010, Dynamic three-dimensional tomography of the solar corona. Solar Phys. 262, 495. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F., Peter, H., Malanushenko, A.: 2015, Thermal diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: A validated method for differential emission measure inversions. Astrophys. J. 807, 143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Del Zanna, G.: 2013, The multi-thermal emission in solar active regions. Astron. Astrophys. 558, A73. DOI . ADS .

    Article  Google Scholar 

  • Feldman, U., Mandelbaum, P., Seely, J.F., Doschek, G.A., Gursky, H.: 1992, The potential for plasma diagnostics from stellar extreme-ultraviolet observations. Astrophys. J. Suppl. 81, 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Feldman, U., Doschek, G.A., Schühle, U., Wilhelm, K.: 1999, Properties of quiet-Sun coronal plasmas at distances of \(1.03 \leq R_{\odot}\leq1.50\) along the Solar Equatorial Plane. Astrophys. J. 518, 500. DOI . ADS .

    Article  ADS  Google Scholar 

  • Frazin, R.A.: 2000, Tomography of the solar corona. I. A robust, regularized, positive estimation method. Astrophys. J. 530, 1026. DOI . ADS .

    Article  ADS  Google Scholar 

  • Frazin, R.A., Janzen, P.: 2002, Tomography of the solar corona. II. Robust, regularized, positive estimation of the three-dimensional electron density distribution from LASCO-C2 polarized white-light images. Astrophys. J. 570, 408. DOI . ADS .

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F.: 2009, Quantitative, three-dimensional analysis of the global corona with multi-spacecraft differential emission measure tomography. Astrophys. J. 701, 547. DOI . ADS .

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Thompson, W.T., Hewett, R.J., Lamy, P., Llebaria, A., Vourlidas, A., Burkepile, J.: 2012, Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 coronagraphs. Solar Phys. 280, 273. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Huang, Z., Frazin, R.A., Landi, E., Manchester, W.B., Vásquez, A.M., Gombosi, T.I.: 2012, Newly discovered global temperature structures in the quiet sun at solar minimum. Astrophys. J. 755, 86. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jin, M., Manchester, W.B., van der Holst, B., Gruesbeck, J.R., Frazin, R.A., Landi, E., Vasquez, A.M., Lamy, P.L., Llebaria, A., Fedorov, A., Toth, G., Gombosi, T.I.: 2012, A global two-temperature corona and inner heliosphere model: a comprehensive validation study. Astrophys. J. 745, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kashyap, V., Drake, J.J.: 1998, Markov-chain Monte Carlo reconstruction of emission measure distributions: application to solar extreme-ultraviolet spectra. Astrophys. J. 503, 450. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: the view from LASCO white light coronal images. J. Geophys. Res. 119, 47. DOI . ADS .

    Article  Google Scholar 

  • Landi, E., Feldman, U., Dere, K.P.: 2002, CHIANTI – an atomic database for emission lines. V. Comparison with an isothermal spectrum observed with SUMER. Astrophys. J. Suppl. 139, 281. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI – an atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, J., Raymond, J.C., Acton, L.W., Kohl, J.L., Romoli, M., Noci, G., Naletto, G.: 1998, Physical structure of a coronal streamer in the closed-field region as observed from UVCS/SOHO and SXT/Yohkoh. Astrophys. J. 506, 431. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lloveras, D.G., Vásquez, A.M., Shearer, P., Frazin, R.A.: 2017, Effect of stray light correction of extreme-ultraviolet solar images in tomography. Bol. Asoc. Argent. Astron. 59, 145.

    ADS  Google Scholar 

  • Nerney, S., Suess, S.T.: 2005, Stagnation flow in thin streamer boundaries. Astrophys. J. 624, 378. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nuevo, F.A., Huang, Z., Frazin, R., Manchester, W.B. IV, Jin, M., Vásquez, A.M.: 2013, Evolution of the global temperature structure of the solar corona during the minimum between Solar Cycles 23 and 24. Astrophys. J. 773, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nuevo, F.A., Vásquez, A.M., Landi, E., Frazin, R.: 2015, Multimodal differential emission measure in the solar corona. Astrophys. J. 811, 128. DOI . ADS .

    Article  ADS  Google Scholar 

  • Oran, R., Landi, E., van der Holst, B., Lepri, S.T., Vásquez, A.M., Nuevo, F.A., Frazin, R., Manchester, W., Sokolov, I., Gombosi, T.I.: 2015, A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J. 806, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Plowman, J., Kankelborg, C., Martens, P.: 2013, Fast differential emission measure inversion of solar coronal data. Astrophys. J. 771, 2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schiff, A.J., Cranmer, S.R.: 2016, Explaining inverted-temperature loops in the quiet solar corona with magnetohydrodynamic wave-mode conversion. Astrophys. J. 831, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Christian, G.M., Chastain, R.A.: 2016, The coronal loop inventory project: expanded analysis and results. Astrophys. J. 831, 199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sen, P.K.: 1968, Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63(324), 1379. DOI . http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934 .

    Article  MATH  MathSciNet  Google Scholar 

  • Serio, S., Peres, G., Vaiana, G.S., Golub, L., Rosner, R.: 1981, Closed coronal structures. II – Generalized hydrostatic model. Astrophys. J. 243, 288. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shearer, P., Frazin, R.A., Hero, A.O. III, Gilbert, A.C.: 2012, The first stray light corrected extreme-ultraviolet images of solar coronal holes. Astrophys. J. Lett. 749, L8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Suess, S.T., Wang, A.-H., Wu, S.T.: 1996, Volumetric heating in coronal streamers. J. Geophys. Res. 101, 19957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tóth, G., van der Holst, B., Huang, Z.: 2011, Obtaining potential field solutions with spherical harmonics and finite differences. Astrophys. J. 732, 102. DOI . ADS .

    Article  ADS  Google Scholar 

  • van der Holst, B., Manchester, W.B. IV, Frazin, R.A., Vásquez, A.M., Tóth, G., Gombosi, T.I.: 2010, A data-driven, two-temperature solar wind model with Alfvén waves. Astrophys. J. 725, 1373. DOI . ADS .

    Article  ADS  Google Scholar 

  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys. J. 782, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vásquez, A.M.: 2016, Seeing the solar corona in three dimensions. Adv. Space Res. 57, 1286. DOI .

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Kamalabadi, F.: 2009, 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: analysis of prominence cavities. Solar Phys. 256, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Manchester, W.B. IV: 2010, The solar minimum corona from differential emission measure tomography. Astrophys. J. 715, 1352. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vásquez, A.M., van Ballegooijen, A.A., Raymond, J.C.: 2003, The effect of proton temperature anisotropy on the solar minimum corona and wind. Astrophys. J. 598, 1361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Huang, Z., Manchester, W.B., Frazin, R.A.: 2011, The WHI corona from differential emission measure tomography. Solar Phys. 274, 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vibert, D., Peillon, C., Lamy, P., Frazin, R.A., Wojak, J.: 2016, Time-dependent tomographic reconstruction of the solar corona. Astron. Comput. 17, 144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Schwenn, R., Simnett, G.M.: 1998, Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warren, H.P., Byers, J.M., Crump, N.A.: 2017, Sparse Bayesian inference and the temperature structure of the solar corona. Astrophys. J. 836, 215. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the two anonymous referees for their careful and critical review of the manuscript that helped to improve its content in a thorough fashion, particularly in relation to the explanation of physical aspects of the DEMT technique, and the significance of the systematic uncertainties involved in the analysis. The authors also wish to thank Enrico Landi and Frédéric Auchère for useful discussions. D.G.Ll. acknowledges the CONICET doctoral fellowship (Res. Nro. 4870) to IAFE that supported his participation in this research. The authors acknowledge ANPCyT grant 2012/0973 and CONICET grant PIP 11220120100403 to IAFE that partially supported their participation in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego G. Lloveras, Alberto M. Vásquez, Federico A. Nuevo or Richard A. Frazin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Appendix: Uncertainty Analysis

Appendix: Uncertainty Analysis

Following the study developed by Nuevo et al. (2015), the systematic uncertainty of the results derived from the DEMT + PFSS study that are due to the tomography regularization level and the EUV image radiometric calibration is quantitatively investigated.

The EUVI and EIT data were prepared using the latest processing tools and calibration corrections provided by their teams through the SolarSoft package. The EUVI channels have an estimated relative radiometric calibration uncertainty between the different filters on the order of \({\lesssim}\,15\%\) (Article I), and the EIT channels are thought to have a similar relative calibration uncertainty (Frédéric Auchère, private communication). Since the LDEM is sensitive to the ratios of the channel intensities, the relative calibration uncertainty propagates into the estimated electron density and temperature.

The two telescopes also have an absolute radiometric calibration uncertainty that corresponds to a common global factor that affects all channels simultaneously. Comparisons of EIT and EUVI observations indicate that they agree to within about \({\approx}\,30 \%\) (Frédéric Auchère, private communication). For a practical comparison between the results based on data from both telescopes, we assume that the absolute radiometric calibration of each telescope is half of that value, i.e. \({\approx}\,15\%\). The effect of the absolute radiometric uncertainty is a global correction factor for the intensity of all EUV channels, and thus on the determined LDEM area. As the derived electron density scales with the square root of the LDEM, the absolute radiometric calibration uncertainty carries an uncertainty on the order of \({\approx}\,8\%\) for the electron density, and has no effect on the determination of either the electron density scale height or the electron temperature (as they depend on the shape of the LDEM only, not on its area).

The regularization level of the tomographic inversion is controlled by a single dimensionless amplitude parameter \(p\), called the regularization parameter. For \(p=0\), no regularization is applied. Its optimal value \(p_{\mathrm{opt}}\) and its uncertainty \(\Delta p\) are determined through tomography cross-validation studies (Frazin and Janzen, 2002; Frazin, Vásquez, and Kamalabadi, 2009) for each band independently. The resulting values depend on the particular instrument, band, and period under analysis. Based on the previous studies by Frazin, Vásquez, and Kamalabadi (2009), Vásquez, Frazin, and Manchester (2010), Vásquez et al. (2011) for EUVI data, by Nuevo et al. (2015) for SDO/AIA data, and our own studies for EIT data, we here used characteristic average values for all EUV bands, specifically, \(p_{\mathrm{opt}}=0.75\) and \(\Delta p=0.40\).

The effect of the sources of uncertainty on the results was then investigated through an “error box” analysis, which consists of varying the relevant parameters within their range of uncertainty in a controlled fashion. The DEMT analysis was applied to over-regularized (\(p = p_{\mathrm{opt}} + \Delta p\)) and under-regularized (\(p = p_{\mathrm{opt}} - \Delta p\)) FBE sets, with the regularization level varied in unison for all bands. In each case, the relative radiometric uncertainty of the EUVI (or EIT) bands was simultaneously considered by applying a \({\pm}\,15\%\) relative correction to the FBE values of each band. As three EUV bands were used, the possible combinations for this relative correction were \(C=2^{3}\). In summary, for each rotation, \(C\) under-regularized and \(C\) over-regularized DEMT studies were performed, with each of the \(N=2C\) cases corresponding to a “corner” case of the error box analysis.

For each of the resulting \(N\) DEMT data sets we performed the analysis. For each coronal region, the median value of the \(N\) statistical distributions of each analyzed physical parameter (\(N_{\mathrm{CM}}\), \(\lambda_{N}\), \(\langle T_{\mathrm{m}}\rangle \)) can be computed. Then, the mean value and standard deviation (over all \(N\) studies) of these medians was obtained. The results are fully detailed in the first three columns of Tables 7 and 8 for rotations CR-2081 and CR-1915, respectively. For each coronal region, the first row summarizes the “base” DEMT results reported in the article (i.e. without applying corrections to the FBEs). The second row shows the average \(\mu\) of the results of the \(N\) DEMT + PFFS studies, while the third row shows their fractional standard deviation \(\sigma /\mu\). This fractional standard deviation is a measure of the uncertainty of the corresponding physical parameter due to the systematic uncertainties. The last three columns show the results for the fractional standard deviation of the \(N\) statistical distributions of each analyzed physical parameter. The results of the tables are discussed in Section 3.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloveras, D.G., Vásquez, A.M., Nuevo, F.A. et al. Comparative Study of the Three-Dimensional Thermodynamical Structure of the Inner Corona of Solar Minimum Carrington Rotations 1915 and 2081. Sol Phys 292, 153 (2017). https://doi.org/10.1007/s11207-017-1179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1179-z

Keywords

Navigation