Skip to main content
Log in

Charge States of Krypton and Xenon in the Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aellig, M.R., Grünwaldt, H., Bochsler, P., Hefti, S., Wurz, P., Kallenbach, R., Ipavich, F.M., Hovestadt, D., Hilchenbach, M. (the CELIAS team): 1997, Solar wind minor ion charge states observed with high time resolution with SOHO/CELIAS/CTOF. In: Proceedings of the 31st ESLAB Meeting, ESA-SP 415, 27.

    Google Scholar 

  • Aellig, M.R., Grünwaldt, H., Bochsler, P., Wurz, P., Hefti, S., Kallenbach, R., Ipavich, F.M., Axford, W.I., Balsiger, H., Bürgi, A., Coplan, M.A., Galvin, A.B., Geiss, J., Gliem, F., Gloeckler, G., Hilchenbach, M., Hovestadt, D., Hsieh, K.C., Klecker, B., Lee, M.A., Livi, S., Managadze, G.G., Marsch, E., Möbius, E., Neugebauer, M., Reiche, K.-U., Scholer, M., Verigin, M.I., Wilken, B.: 1998, Iron freeze-in temperatures measured by SOHO/CELIAS/CTOF. J. Geophys. Res. 103, 17215. DOI

    Article  ADS  Google Scholar 

  • Arnaud, M., Raymond, J.: 1992, Iron ionization and recombination rates and ionization equilibrium. Astrophys. J. 398, 394. DOI

    Article  ADS  Google Scholar 

  • Arnaud, M., Rothenflug, R.: 1985, An updated evaluation of recombination and ionization rates. Astron. Astrophys. Suppl. 60, 425.

    ADS  Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Fenimore, E.E., Gosling, J.T.: 1979, Solar wind heavy ions from flare-heated coronal plasma. Solar Phys. 62, 179. DOI

    Article  ADS  Google Scholar 

  • Becker, R.H., Pepin, R.O.: 1989, Long-term changes in solar wind elemental and isotopic ratios: A comparison of two ilmenites of different antiquities. Geochim. Cosmochim. Acta 53, 1135. DOI

    Article  ADS  Google Scholar 

  • Bodmer, R., Bochsler, P.: 2000, Influence of Coulomb collisions on isotopic and elemental fractionation in the solar wind acceleration process. J. Geophys. Res. 105, 47. DOI

    Article  ADS  Google Scholar 

  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Wilcox, J.M.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1AU. J. Geophys. Res. 86, 4565. DOI

    Article  ADS  Google Scholar 

  • Bürgi, A., Geiss, J.: 1986, Helium and minor ions in the corona and solar wind: Dynamics and charge states. Solar Phys. 103, 347. DOI

    Article  ADS  Google Scholar 

  • Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Mendia, M.D., Mörgeli, M., Schwaller, H., Stettler, A., Krähenbühl, U., von Gunten, H.R.: 1972, Trapped solar wind noble gases in Apollo 12 lunar fines 12001 and Apollo 11 breccia 10046. In: Proceedings of the Third Lunar Science Conference (Supplement 3, Geochim. Cosmochim. Acta 2), 1821.

    Google Scholar 

  • Heber, V.S., Wiens, R.C., Jurewicz, A.J.G., Baur, H., Vogel, N., Wieler, R., Burnett, D.S.: 2009, Isotope fractionation of the solar wind implanted into the Genesis concentrator target determined by neon in the gold cross and implantation experiments. Lunar Planet. Sci. 40, 1485.

    ADS  Google Scholar 

  • Hefti, S., Grünwaldt, H., Bochsler, P., Aellig, M.R.: 2000, Oxygen freeze-in temperatures measured with SOHO/CELIAS/CTOF. J. Geophys. Res. 105, 10527. DOI

    Article  ADS  Google Scholar 

  • Hirshberg, J., Alksne, A., Colburn, D.S., Bame, S.J., Hundhausen, A.J.: 1970, Observation of a solar flare induced interplanetary shock and helium-enriched driver gas. J. Geophys. Res. 75, 1. DOI

    Article  ADS  Google Scholar 

  • Ipavich, F.M., Galvin, A.B., Geiss, J., Ogilvie, K.W., Gliem, F.: 1992, Solar wind iron and oxygen charge states and relative abundances measured by SWICS on Ulysses. In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven. Proceedings of the 3rd COSPAR Colloquium Held in Goslar, Germany, 16–20 September, 1991, 369.

    Google Scholar 

  • Kerridge, J.F.: 1980, Secular variations in composition of the solar wind: Evidence and causes. In: Pepin, R.O., Eddy, J.A., Merrill, R.B. (eds.) Proc. Conf. Ancient Sun, Geochim. Cosmochim. Acta Suppl. 13, 475.

    Google Scholar 

  • Kopp, R.A., Holzer, T.E.: 1976, Dynamics of coronal hole regions. Solar Phys. 49, 43. DOI

    Article  ADS  Google Scholar 

  • Landi, E., Oran, R., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., van der Holst, B.: 2014, Charge state evolution in the solar wind. III. Model comparison with observations. Astrophys. J. 790, 111. DOI .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Landi, E., Zurbuchen, T.H.: 2013, Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys. J. 768, 94. DOI

    Article  ADS  Google Scholar 

  • Marty, B., Altwegg, K., Balsiger, H., Bar-Nun, A., Bekaert, D.V., Berthelier, J.-J., Bieler, A., Briois, C., Calmonte, U., Combi, M., DeKeyser, J., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Hansen, K.C., Hässig, M., Jäckel, A., Kopp, E., Korth, A., Le Roy, L., Mall, U., Mousis, O., Owen, T., Rème, H., Rubin, M., Sémon, T., Tzou, C.-Y., Waite, J.H., Wurz, P.: 2017, Xenon isotopes in comet 67P/Churyumov–Gerasimenko show comets contributed to Earth’s atmosphere. Science 356, 1069. DOI

    Article  ADS  Google Scholar 

  • Mathew, K.J., Marti, K.: 2003, Solar wind and other gases in the regoliths of the Pesyanoe parent object and the Moon. Meteorit. Planet. Sci. 38, 627. DOI

    Article  ADS  Google Scholar 

  • Meshik, A., Hohenberg, Ch., Pravdivtseva, O., Burnett, D.: 2014, Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326. DOI

    Article  ADS  Google Scholar 

  • Summers, H.P., Dickson, W.J., O’Mullane, M.G., Badnell, N.R., Whiteford, A.D., Brooks, D.H., Lang, J., Loch, S.D., Griffin, D.C.: 2006, Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements. Plasma Phys. Control. Fusion 48, 263. DOI

    Article  ADS  Google Scholar 

  • Vogel, N., Heber, V.S., Baur, H., Burnett, D.S., Wieler, R.: 2011, Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 75, 3057. DOI

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with Rainer Wieler and helpful suggestions from an anonymous reviewer. The data for ionization and recombination rates of Kr and Xe are taken from ADAS, which is a project managed by the University of Strathclyde and funded through membership universities and astrophysics and fusion laboratories in Europe and worldwide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bochsler.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochsler, P., Fludra, A. & Giunta, A. Charge States of Krypton and Xenon in the Solar Wind. Sol Phys 292, 128 (2017). https://doi.org/10.1007/s11207-017-1150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1150-z

Keywords

Navigation