Solar Physics

, 292:94 | Cite as

Oscillations in the 45 – 5000 MHz Radio Spectrum of the 18 April 2014 Flare

  • Marian Karlický
  • Ján Rybák
  • Christian Monstein
Article

Abstract

Using a new type of oscillation map, made from the radio spectra by the wavelet technique, we study the 18 April 2014 M7.3 flare (SOL2014-04-18T13:03:00L245C017). We find a quasi-periodic character of this flare with periods in the range 65 – 115 seconds. At the very beginning of this flare, in connection with the drifting pulsation structure (plasmoid ejection), we find that the 65 – 115 s oscillation phase slowly drifts towards lower frequencies, which indicates an upward propagating wave initiated at the start of the magnetic reconnection. Many periods (1 – 200 seconds) are found in the drifting pulsation structure, which documents multi-scale and multi-periodic processes. On this drifting structure, fiber bursts with a characteristic period of about one second are superimposed, whose frequency drift is similar to that of the drifting 65 – 115 s oscillation phase. We also checked periods found in this flare by the EUV Imaging Spectrometer (EIS)/Hinode and Interface Region Imaging Spectrograph (IRIS) observations. We recognize the type III bursts (electron beams) as proposed, but their time coincidence with the EIS and IRIS peaks is not very good. The reason probably is that the radio spectrum is a whole-disk record consisting of all bursts from any location, while the EIS and IRIS peaks are emitted only from locations of slits in the EIS and IRIS observations.

Keywords

Sun: flares Sun: radio radiation Sun: oscillations 

References

  1. Aschwanden, M.J.: 2002, Particle acceleration and kinematics in solar flares – A synthesis of recent observations and theoretical concepts (invited review). Space Sci. Rev. 101, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bárta, M., Vršnak, B., Karlický, M.: 2008, Dynamics of plasmoids formed by the current sheet tearing. Astron. Astrophys. 477, 649. DOI. ADS. ADSCrossRefMATHGoogle Scholar
  3. Bárta, M., Büchner, J., Karlický, M., Skála, J.: 2011, Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis. Astrophys. J. 737, 24. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Benz, A.O., Monstein, C., Meyer, H.: 2005, Callisto a new concept for solar radio spectrometers. Solar Phys. 226, 143. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Brannon, S.R., Longcope, D.W., Qiu, J.: 2015, Spectroscopic observations of an evolving flare ribbon substructure suggesting origin in current sheet waves. Astrophys. J. 810, 4. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Brosius, J.W., Daw, A.N.: 2015, Quasi-periodic fluctuations and chromospheric evaporation in a solar flare ribbon observed by IRIS. Astrophys. J. 810, 45. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Brosius, J.W., Daw, A.N., Inglis, A.R.: 2016, Quasi-periodic fluctuations and chromospheric evaporation in a solar flare ribbon observed by Hinode/EIS, IRIS, and RHESSI. Astrophys. J. 830, 101. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Carley, E.P., Vilmer, N., Gallagher, P.T.: 2016, Radio diagnostics of electron acceleration sites during the eruption of a flux rope in the solar corona. Astrophys. J. 833, 87. DOI. ADS. ADSCrossRefGoogle Scholar
  9. De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Farge, M.: 1992, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395. DOI. ADS. ADSMathSciNetCrossRefMATHGoogle Scholar
  11. Fárník, F., Karlický, M., Švestka, Z.: 2003, Hard x-ray pulsations in the initial phase of flares. Solar Phys. 218, 183. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Huang, J., Tan, B., Zhang, Y., Karlický, M., Mészárosová, H.: 2014, Quasi-periodic pulsations with varying period in multi-wavelength observations of an X-class flare. Astrophys. J. 791, 44. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Jelínek, P., Karlický, M.: 2009, Computational study of impulsively generated standing slow acoustic waves in a solar coronal loop. Eur. Phys. J. D 54, 305. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Jelínek, P., Karlický, M.: 2010, Impulsively generated wave trains in a solar coronal loop. IEEE Trans. Plasma Sci. 38, 2243. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Jiřička, K., Karlický, M.: 2008, Narrowband pulsating decimeter structure observed by the new Ondřejov solar radio spectrograph. Solar Phys. 253, 95. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Jiřička, K., Karlický, M., Kepka, O., Tlamicha, A.: 1993, Fast drift burst observations with the new Ondrejov radiospectrograph. Solar Phys. 147, 203. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Karlický, M.: 1988, Response of the current sheet to a time-limited enhancement of electrical resistivity. Bull. Astron. Inst. Czechoslov. 39, 13. ADS. ADSGoogle Scholar
  19. Karlický, M.: 2004, Series of high-frequency slowly drifting structures mapping the flare magnetic field reconnection. Astron. Astrophys. 417, 325. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Karlický, M.: 2008, Separation of accelerated electrons and positrons in the relativistic reconnection. Astrophys. J. 674, 1211. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Karlický, M.: 2013, Radio continua modulated by waves: Zebra patterns in solar and pulsar radio spectra? Astron. Astrophys. 552, A90. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Karlický, M., Bárta, M.: 2007, Drifting pulsating structures generated during tearing and coalescence processes in a flare current sheet. Astron. Astrophys. 464, 735. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Karlický, M., Bárta, M.: 2011, Successive merging of plasmoids and fragmentation in a flare current sheet and their X-ray and radio signatures. Astrophys. J. 733, 107. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Karlický, M., Rybák, J.: 2017, Oscillation maps in the broadband radio spectrum of the 1 August 2010 event. Solar Phys. 292, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Karlický, M., Bárta, M., Rybák, J.: 2010, Radio spectra generated during coalescence processes of plasmoids in a flare current sheet. Astron. Astrophys. 514, A28. DOI. ADS. CrossRefGoogle Scholar
  26. Karlický, M., Mészárosová, H., Jelínek, P.: 2013, Radio fiber bursts and fast magnetoacoustic wave trains. Astron. Astrophys. 550, A1. DOI. ADS. CrossRefGoogle Scholar
  27. Karlický, M., Zlobec, P., Mészárosová, H.: 2010, Subsecond (0.1 s) pulsations in the 11 April 2001 radio event. Solar Phys. 261, 281. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715. ADS. ADSGoogle Scholar
  29. Konkol, P., Murawski, K., Lee, D., Weide, K.: 2010, Numerical simulations of the attenuation of the fundamental slow magnetoacoustic standing mode in a gravitationally stratified solar coronal arcade. Astron. Astrophys. 521, A34. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Kumar, P., Cho, K.-S.: 2013, Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection. Astron. Astrophys. 557, A115. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2016, Observation of a quasiperiodic pulsation in hard X-ray, radio, and extreme-ultraviolet wavelengths. Astrophys. J. 822, 7. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Kundu, M.R.: 1965, Solar Radio Astronomy, Interscience, New York, 27. ADS. Google Scholar
  33. Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: 2010, Types of microwave quasi-periodic pulsations in single flaring loops. Solar Phys. 267, 329. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Kuznetsov, A.A.: 2006, Generation of intermediate drift bursts by magnetohydrodynamic waves in the solar corona. Solar Phys. 237, 153. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Mann, G., Karlický, M., Motschmann, U.: 1987, On the intermediate drift burst model. Solar Phys. 110, 381. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Mészárosová, H., Rybák, J., Karlický, M.: 2011, Separation of drifting pulsating structures in a complex radio spectrum of the 2001 April 11 event. Astron. Astrophys. 525, A88. DOI. ADS. CrossRefGoogle Scholar
  38. Mészárosová, H., Karlický, M., Rybák, J., Fárník, F., Jiřička, K.: 2006, Long period variations of dm-radio and X-ray fluxes in three X-class flares. Astron. Astrophys. 460, 865. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Mészárosová, H., Karlický, M., Jelínek, P., Rybák, J.: 2014, Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra. Astrophys. J. 788, 44. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Nakariakov, V.M., Pascoe, D.J., Arber, T.D.: 2005, Short quasi-periodic MHD waves in coronal structures. Space Sci. Rev. 121, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Nakariakov, V.M., Tsiklauri, D., Kelly, A., Arber, T.D., Aschwanden, M.J.: 2004, Acoustic oscillations in solar and stellar flaring loops. Astron. Astrophys. 414, L25. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Nakariakov, V.M., Foullon, C., Verwichte, E., Young, N.P.: 2006, Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop. Astron. Astrophys. 452, 343. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Nakariakov, V.M., Inglis, A.R., Zimovets, I.V., Foullon, C., Verwichte, E., Sych, R., Myagkova, I.N.: 2010, Oscillatory processes in solar flares. Plasma Phys. Control. Fusion 52(12), 124009. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Nakariakov, V.M., Pilipenko, V., Heilig, B., Jelínek, P., Karlický, M., Klimushkin, D.Y., Kolotkov, D.Y., Lee, D.-H., Nisticò, G., Van Doorsselaere, T., Verth, G., Zimovets, I.V.: 2016, Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding. Space Sci. Rev. 200, 75. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Nishizuka, N., Karlický, M., Janvier, M., Bárta, M.: 2015, Particle acceleration in plasmoid ejections derived from radio drifting pulsating structures. Astrophys. J. 799, 126. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Nisticò, G., Pascoe, D.J., Nakariakov, V.M.: 2014, Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA. Astron. Astrophys. 569, A12. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Norman, C.A., Smith, R.A.: 1978, Kinetic processes in solar flares. Astron. Astrophys. 68, 145. ADS. ADSGoogle Scholar
  49. Ofman, L., Wang, T.: 2002, Hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett. 580, L85. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Ohyama, M., Shibata, K.: 1998, X-ray plasma ejection associated with an impulsive flare on 1992 October 5: Physical conditions of X-ray plasma ejection. Astrophys. J. 499, 934. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Pascoe, D.J., De Moortel, I.: 2014, Standing kink modes in three-dimensional coronal loops. Astrophys. J. 784, 101. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J.L., Manoharan, P.K., Elliott, H.A.: 2007, CME propagation characteristics from radio observations. Solar Phys. 244, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Selwa, M., Murawski, K., Solanki, S.K.: 2005, Excitation and damping of slow magnetosonic standing waves in a solar coronal loop. Astron. Astrophys. 436, 701. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Tan, B.: 2008, Observable parameters of solar microwave pulsating structure and their implications for solar flare. Solar Phys. 253, 117. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Treumann, R.A., Guedel, M., Benz, A.O.: 1990, Alfven wave solitons and solar intermediate drift bursts. Astron. Astrophys. 236, 242. ADS. ADSGoogle Scholar
  59. Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: An overview of recent results (invited review). Solar Phys. 291, 3143. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Wang, T.J., Solanki, S.K., Innes, D.E., Curdt, W.: 2005, Initiation of hot coronal loop oscillations: Spectral features. Astron. Astrophys. 435, 753. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Watanabe, K., Masuda, S., Segawa, T.: 2012, Hinode flare catalogue. Solar Phys. 279, 317. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Astronomical InstituteAcademy of Sciences of the Czech RepublicOndřejovCzech Republic
  2. 2.Astronomical InstituteSlovak Academy of SciencesTatranská LomnicaSlovakia
  3. 3.Institute for AstronomyETH ZurichZurichSwitzerland

Personalised recommendations