Solar Physics

, 292:87

Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): High-Resolution Interferometric Imaging

  • M. Shimojo
  • T. S. Bastian
  • A. S. Hales
  • S. M. White
  • K. Iwai
  • R. E. Hills
  • A. Hirota
  • N. M. Phillips
  • T. Sawada
  • P. Yagoubov
  • G. Siringo
  • S. Asayama
  • M. Sugimoto
  • R. Brajša
  • I. Skokić
  • M. Bárta
  • S. Kim
  • I. de Gregorio-Monsalvo
  • S. A. Corder
  • H. S. Hudson
  • S. Wedemeyer
  • D. E. Gary
  • B. De Pontieu
  • M. Loukitcheva
  • G. D. Fleishman
  • B. Chen
  • A. Kobelski
  • Y. Yan
Article

Abstract

Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low-contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3-mm band (Band 3) and the 1.25-mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar-commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.

Keywords

Radio emission, millimeter wave Interferometer, ALMA Instrumentation and data management 

References

  1. ALMA Partnership, Asayama, S., Biggs, A., de Gregorio, I., Dent, B., Di Francesco, J., Fomalont, E., Halse, A.S., Humphries, E.: 2016, ALMA Cycle 4 Technical Handbook, almascience.org/documents-and-tools/cycle4/alma-technical-handbook, 978-3-923524-66-2.
  2. Andreani, P., Carpenter, J., Diaz-Trigo, M., Hibbard, J., Nyman, L., Remijan, T., Tatematsu, K.: 2016, ALMA Cycle 4 Proposer’s Guide. ALMA, Doc. 4.2 v1.0. almascience.org/documents-and-tools/cycle4/alma-proposers-guide,
  3. Bastian, T.S.: 2002, ALMA and the Sun. Astron. Nachr. 323, 271. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Briggs, D.S.: 1995, High fidelity deconvolution of moderately resolved sources. PhD thesis, The New Mexico Institute of Mining and Technology, Socorro New Mexico. Google Scholar
  5. Claude, S., Jiang, F., Niranjanan, P., Dindo, P., Erickson, D., Yeung, K., Derdall, D., Duncan, D., Garcia, D., Henke, D., Leckie, B., Pfleger, M., Rodrigues, G., Szeto, K., Welle, P., Wood, I., Caputa, K., Lichtenberger, A., Pan, S.-K.: 2006, Performance of the Band 3 (84 – 116 GHz) receiver for ALMA. In: Hedden, A., Reese, M., Santavicca, D., Frunzio, L., Prober, D., Piitz, P., Groppi, C., Walker, C. (eds.) Seventeenth Internat. Symp. Space Terahertz Tech., 154. ADS. Google Scholar
  6. Claude, S., Jiang, F., Niranjanan, P., Dindo, P., Erickson, D., Yeung, K., Derdall, D., Duncan, D., Garcia, D., Leckie, B., Pfleger, M., Rodrigues, G., Szeto, K., Welle, P., Wood, I., Caputa, K., Lichtenberger, A., Pan, S.-K.: 2008, Performance of the pre-production Band 3 (84 – 116 GHz) receivers for ALMA. In: Duncan, W.D., Holland, W.S., Withington, S., Zmuidzinas, J. (eds.) Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proc. SPIE 7020, 70201B. DOI. ADS. CrossRefGoogle Scholar
  7. Cotton, W.D.: 1999, Polarization in interferometry. In: Taylor, G.B., Carilli, C.L., Perley, R.A. (eds.) Synthesis Imaging in Radio Astronomy II, A Collection of Lectures from the Sixth NRAO/NMIMT Synthesis Imaging Summer School CS-180, Astron. Soc. Pacific., San Francisco, 111. ADS. Google Scholar
  8. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Dulk, G.A.: 1985, Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Ediss, G.A., Carter, M., Cheng, J., Effland, J.E., Grammer, W., Horner, N. Jr., Kerr, A.R., Koller, D., Lauria, E.F., Morris, G., Pan, S.-K., Reiland, G., Sullivan, M.: 2004, ALMA Band 6 cartridge: design and performance. In: Narayanan, G. (ed.) Fifteenth Internat. Symp. Space Terahertz Technology, 181. ADS. Google Scholar
  11. Escoffier, R.P., Comoretto, G., Webber, J.C., Baudry, A., Broadwell, C.M., Greenberg, J.H., Treacy, R.R., Cais, P., Quertier, B., Camino, P., Bos, A., Gunst, A.W.: 2007, The ALMA correlator. Astron. Astrophys. 462, 801. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gary, D.E., Hurford, G.J.: 2004, Radio spectral diagnostics. In: Gary, D.E., Keller, C.U. (eds.) Solar and Space Weather Radiophysics, Astrophys. Space Sci. Lib. 314, 71. DOI. ADS. CrossRefGoogle Scholar
  13. Hills, R.E., Kurz, R.J., Peck, A.B.: 2010, In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) ALMA: status report on construction and early results from commissioning. In: Ground-based and Airborne Telescopes III, Proc. SPIE 7733, 773317. DOI. ADS. CrossRefGoogle Scholar
  14. Iguchi, S., Morita, K.-I., Sugimoto, M., Vila Vilaró, B., Saito, M., Hasegawa, T., Kawabe, R., Tatematsu, K., Seiichi, S., Kiuchi, H., Okumura, S.K., Kosugi, G., Inatani, J., Takakuwa, S., Iono, D., Kamazaki, T., Ogasawara, R., Ishiguro, M.: 2009, The Atacama Compact Array (ACA). Publ. Astron. Soc. Japan 61, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Iwai, K.: 2015, In: ALMA Solar Observing I Test and Validation. Technical report, ALMA Solar Commissioning Report. Joint ALMA Observatory, Chile. Google Scholar
  16. Iwai, K.: 2016, Nonlinearity of ALMA Antennas in Detuning Mode 1. Technical report, CSV-3246 Report Joint ALMA Observatory, Chile. Google Scholar
  17. Kamazaki, T., Okumura, S.K., Chikada, Y., Okuda, T., Kurono, Y., Iguchi, S., Mitsuishi, S., Murakami, Y., Nishimura, N., Mita, H., Sano, R.: 2012, Digital spectro-correlator system for the Atacama Compact Array of the Atacama Large Millimeter/submillimeter Array. Publ. Astron. Soc. Japan 64, 29. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Karlický, M., Bárta, M., Da̧browski, B.P., Heinzel, P.: 2011, Solar research with ALMA. Solar Phys. 268, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Loukitcheva, M., White, S.M., Solanki, S.K., Fleishman, G.D., Carlsson, M.: 2017, Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field. Astron. Astrophys. 601, A43. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Mangum, J.G., Baars, J.W.M., Greve, A., Lucas, R., Snel, R.C., Wallace, P., Holdaway, M.: 2006, Evaluation of the ALMA prototype antennas. Publ. Astron. Soc. Pac. 118, 1257. DOI. ADS. ADSCrossRefGoogle Scholar
  22. McMullin, J.P., Waters, B., Schiebel, D., Young, W., Golap, K.: 2007, CASA Architecture and Applications, CS-376, Astron. Soc. Pacific., San Francisco, 127. ADS. Google Scholar
  23. Miyawaki, S., Iwai, K., Shibasaki, K., Shiota, D., Nozawa, S.: 2016, Coronal magnetic fields derived from simultaneous microwave and EUV observations and comparison with the potential field model. Astrophys. J. 818, 8. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Thompson, A.R., Moran, J.M., Swenson, G.W. Jr.: 2004, Interferometry and Synthesis in Radio Astronomy, Wiley-VCH, Weinheim. ADS. Google Scholar
  25. Ukita, N., Saito, M., Ezawa, H., Ikenoue, B., Ishizaki, H., Iwashita, H., Yamaguchi, N., Hayakawa, T.: 2004, Design and performance of the ALMA-J prototype antenna. In: Oschmann, J.M. Jr. (ed.) Ground-based Telescopes, Proc. SPIE 5489, 1085. DOI. ADS. CrossRefGoogle Scholar
  26. Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Loukitcheva, M., Fleck, B., Kontar, E.P., De Pontieu, B., Yagoubov, P., Tiwari, S.K., Soler, R., Black, J.H., Antolin, P., Scullion, E., Gunár, S., Labrosse, N., Ludwig, H.-G., Benz, A.O., White, S.M., Hauschildt, P., Doyle, J.G., Nakariakov, V.M., Ayres, T., Heinzel, P., Karlicky, M., Van Doorsselaere, T., Gary, D., Alissandrakis, C.E., Nindos, A., Solanki, S.K., Rouppe van der Voort, L., Shimojo, M., Kato, Y., Zaqarashvili, T., Perez, E., Selhorst, C.L., Barta, M.: 2016, Solar science with the Atacama Large Millimeter/submillimeter Array – a new view of our Sun. Space Sci. Rev. 200, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  27. White, S.M., Iwai, K., Phillps, N.M., Hills, R.E., Hirota, A., Yagoubov, P., Siringo, G., Shimojo, M., Bastian, T.S., Hales, A.S., Sawada, T., Asayama, S., Sugimoto, M., Marson, R.G., Muller, E., Nakazato, T., Sugimoto, K., Brajša, R., Skokić, I., Bárta, M., Kim, S., Remjian, A.J., de Gregorio, I., Coder, S.A., Hudson, H.S., Loukitcheva, M., Chen, B., De Pnotieu, B., Fleishmann, G.D., Gary, D.E., Kobelski, A., Wedemeyer, S., Yan, Y.: 2017, Observing the Sun with ALMA: fast-scan single-dish mapping. Solar Phys., 292. DOI.
  28. Wootten, A., Thompson, A.R.: 2009, The Atacama Large Millimeter/submillimeter Array. Proc. IEEE 97(8), 1463. DOI. ADSCrossRefGoogle Scholar
  29. Yagoubov, P.: 2016, Recommendations on mixer de-tuning for Solar observations with ALMA. Technical report, CSV-3245 Report, Joint ALMA Observatory, Chile. Google Scholar
  30. Yagoubov, P.A.: 2013, Solar observations with ALMA – how to minimize saturation in SIS mixers. In: 2013 38th Internat. Conf. Infrared, Millimeter, Terahertz Waves, IRMMW-THz 2013, IEEE, New York, 1. DOI. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • M. Shimojo
    • 1
    • 2
  • T. S. Bastian
    • 3
  • A. S. Hales
    • 3
    • 4
  • S. M. White
    • 5
  • K. Iwai
    • 6
    • 7
  • R. E. Hills
    • 8
  • A. Hirota
    • 1
    • 4
  • N. M. Phillips
    • 4
    • 9
  • T. Sawada
    • 1
    • 4
  • P. Yagoubov
    • 10
  • G. Siringo
    • 4
    • 9
  • S. Asayama
    • 1
  • M. Sugimoto
    • 1
  • R. Brajša
    • 11
  • I. Skokić
    • 12
  • M. Bárta
    • 12
  • S. Kim
    • 13
    • 23
  • I. de Gregorio-Monsalvo
    • 4
    • 9
  • S. A. Corder
    • 3
    • 4
  • H. S. Hudson
    • 14
    • 15
  • S. Wedemeyer
    • 16
  • D. E. Gary
    • 17
  • B. De Pontieu
    • 16
    • 18
  • M. Loukitcheva
    • 17
    • 19
    • 20
  • G. D. Fleishman
    • 17
  • B. Chen
    • 17
  • A. Kobelski
    • 21
  • Y. Yan
    • 22
  1. 1.National Astronomical Observatory of Japan (NAOJ)MitakaJapan
  2. 2.Department of Astronomical ScienceThe Graduate University for Advanced Studies (SOKENDAI)MitakaJapan
  3. 3.National Radio Astronomy Observatory (NRAO)CharlottesvilleUSA
  4. 4.Joint ALMA Observatory (JAO)VitacuraChile
  5. 5.Space Vehicles DirectorateAir Force Research LaboratoryAlbuquerqueUSA
  6. 6.Institute for Space-Earth Environmental Research (ISEE)Nagoya UniversityNagoyaJapan
  7. 7.National Institute of Information and Communications Technology (NICT)KoganeiJapan
  8. 8.Astrophysics GroupCavendish LaboratoryCambridgeUK
  9. 9.European Southern Observatory (ESO)VitacuraChile
  10. 10.European Southern Observatory (ESO)Garching bei MünchenGermany
  11. 11.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  12. 12.Astronomical InstituteAcademy of SciencesOndřejovCzech Republic
  13. 13.Korea Astronomy and Space Science Institute (KASI)Yuseong-guRepublic of Korea
  14. 14.School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  15. 15.Space Sciences LaboratoryUniversity of California, BerkeleyBerkeleyUSA
  16. 16.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  17. 17.Center for Solar-Terrestrial ResearchNew Jersey Institute of TechnologyNewarkUSA
  18. 18.Lockheed Martin Solar & Astrophysics LabPalo AltoUSA
  19. 19.Max-Planck-Institut for SonnensystemforschungGöttingenGermany
  20. 20.Astronomical InstituteSt. Petersburg UniversitySt. PetersburgRussia
  21. 21.Center for Space Plasma and Aeronomic ResearchUniv. of Alabama HuntsvilleHuntsvilleUSA
  22. 22.National Astronomical ObservatoriesChinese Academy of SciencesChaoyang DistrictChina
  23. 23.Korea University of Science and TechnologyYuseong-guRepublic of Korea

Personalised recommendations