Skip to main content
Log in

Long-Term Pulses of Dynamic Coupling Between Solar Hemispheres

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The north–south (N–S) asymmetry of solar activity is a known statistical phenomenon, but its significance is difficult to prove or to explain theoretically. Here we consider each solar hemisphere as a separate dynamical system connected with the other hemisphere via an unknown coupling parameter. We use a nonlinear dynamics approach to calculate the scale-dependent conditional dispersion (CD) of sunspots between hemispheres. Using daily Greenwich sunspot areas, we calculate the Neumann and Pearson chi-squared distances between CDs as indices showing the direction of coupling. We introduce an additional index of synchronization that shows the strength of coupling and allows us to distinguish between complete synchronization and independency of hemispheres. All indices are evaluated in a four-year moving window showing the evolution of coupling between hemispheres. We find that the driver-response interrelation changes between hemispheres have a few pulses during 130 years of Greenwich data with an at least 40-year-long period of unidirectional coupling. These sharp nearly simultaneous pulses of all causality indices are found at the decay of some 11-year cycles. The pulse rate of this new phenomenon of dynamic coupling is irregular: although the first two pulses repeat after the 22-year Hale cycles, the last two pulses repeat after three and four 11-year cycles, respectively. The last pulse occurs at the decay phase of Cycle 23, which means that the next pulse will likely appear during the decay of the future Cycle 25 or later. This new phenomenon of dynamic coupling reveals additional constraints for understanding and modeling the long-term behavior of solar activity cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andrzejak, R.G., Kraskov, A., Stögbauer, H., Mormann, F., Kreuz, T.: 2003, Bivariate surrogate techniques: Necessity, strengths, and caveats. Phys. Rev. E 68(6), 066202. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Bushby, P.J., Tobias, S.M.: 2007, On predicting the solar cycle using mean-field models. Astrophys. J. 661(2), 1289.

    Article  ADS  Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: 1993, On the asymmetry of solar activity. Astron. Astrophys. 274, 497. ADS .

    ADS  Google Scholar 

  • Carbonell, M., Terradas, J., Oliver, R., Ballester, J.L.: 2007, The statistical significance of the north–south asymmetry of solar activity revisited. Astron. Astrophys. 476(2), 951. DOI .

    Article  ADS  Google Scholar 

  • Čenys, A., Lasiene, G., Pyragas, K.: 1991, Estimation of interrelation between chaotic observables. Physica D 52(2), 332. DOI .

    ADS  MathSciNet  MATH  Google Scholar 

  • Chatterjee, P., Choudhuri, A.R.: 2006, On magnetic coupling between the two hemispheres in solar dynamo models. Solar Phys. 239(1 – 2), 29. DOI .

    Article  ADS  Google Scholar 

  • Chatterjee, P., Nandy, D., Choudhuri, A.R.: 2004, Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue. Astron. Astrophys. 427(3), 1019. DOI .

    Article  ADS  Google Scholar 

  • Chicharro, D., Andrzejak, R.G.: 2009, Reliable detection of directional couplings using rank statistics. Phys. Rev. E 80(2), 026217. DOI .

    Article  ADS  Google Scholar 

  • Deza, M.M., Deza, E.: 2006, Dictionary of Distances, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • dos Santos, A.M., Lopes, S.R., Viana, R.R.L.: 2004, Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat. Physica A 338(3), 335. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Goel, A., Choudhuri, A.R.: 2009, The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res. Astron. Astrophys. 9(1), 115. DOI .

    Article  ADS  Google Scholar 

  • Granger, C.W.: 1988, Some recent development in a concept of causality. J. Econom. 39(1), 199. DOI .

    Article  MathSciNet  Google Scholar 

  • Hazra, G., Karak, B.B., Banerjee, D., Choudhuri, A.R.: 2015, Correlation between decay rate and amplitude of solar cycles as revealed from observations and dynamo theory. Solar Phys. 290(6), 1851. DOI .

    Article  ADS  Google Scholar 

  • Hotta, H., Yokoyama, T.: 2010, Solar parity issue with flux-transport dynamo. Astrophys. J. Lett. 714(2), L308. DOI .

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2015, Long-term variations in the north–south asymmetry of solar activity and solar cycle prediction, III: Prediction for the amplitude of solar cycle 25. New Astron. 34, 54. DOI .

    Article  ADS  Google Scholar 

  • Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381(4), 1527. DOI .

    Article  ADS  Google Scholar 

  • Karak, B.B., Choudhuri, A.R.: 2011, The Waldmeier effect and the flux transport solar dynamo. Mon. Not. Roy. Astron. Soc. 410(3), 1503. DOI .

    ADS  Google Scholar 

  • Ma, H., Aihara, K., Chen, L.: 2014, Detecting causality from nonlinear dynamics with short-term time series. Sci. Rep. 4, 7464. DOI .

    Article  ADS  Google Scholar 

  • Mandal, S., Hegde, M., Samanta, T., Hazra, G., Banerjee, D., Ravindra, B.: 2017, Kodaikanal digitized white-light data archive (1921 – 2011). Analysis of various solar cycle features. Astron. Astrophys. DOI .

    Google Scholar 

  • McCracken, J.M., Weigel, R.S.: 2014, Convergent cross-mapping and pairwise asymmetric inference. Phys. Rev. E 90(6), 062903. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI .

    Article  ADS  Google Scholar 

  • Mininni, P.D., Gomez, D.O., Mindlin, G.B.: 2001, Simple model of a stochastically excited solar dynamo. Solar Phys. 201(2), 203. DOI .

    Article  ADS  Google Scholar 

  • Nagovitsyn, Yu.A., Kuleshova, A.I.: 2015, North–South asymmetry of solar activity on a long timescale. Geomagn. Aeron. 55(7), 887. DOI .

    Article  ADS  Google Scholar 

  • Olemskoy, S.V., Kitchatinov, L.L.: 2013, Grand minima and north–south asymmetry of solar activity. Astrophys. J. 777(1), 71. DOI .

    Article  ADS  Google Scholar 

  • Passos, D., Lopes, I.: 2008, A low-order solar dynamo model: Inferred meridional circulation variations since 1750. Astrophys. J. 686(2), 1420. http://iopscience.iop.org/article/10.1086/591511/meta .

    Article  ADS  Google Scholar 

  • Sauer, T., Yorke, J.A., Casdagli, M.: 1991, Embedology. J. Stat. Phys. 65(3 – 4), 579. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shetye, J., Tripathi, D., Dikpati, M.: 2015, Observations and modeling of north–south asymmetries using a flux transport dynamo. Astrophys. J. 799(2), 220. DOI .

    Article  ADS  Google Scholar 

  • Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: A mixed-parity dynamo mode? Astron. Astrophys. 288, 293. ADS .

    ADS  Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M., Munch, S.: 2012, Detecting causality in complex ecosystems. Science 338(6106), 496. DOI .

    Article  ADS  MATH  Google Scholar 

  • Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W., Hanslmeier, A.: 2006, Hemispheric sunspot numbers Rn and Rs from 1945 – 2004: Catalogue and N–S asymmetry analysis for solar cycles 18 – 23. Astron. Astrophys. 447(2), 735. DOI .

    Article  ADS  Google Scholar 

  • Van der Pol, B., Van der Mark, J.: 1928, LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. 6(38), 763.

    Article  Google Scholar 

  • van Nes, E.H., Scheffer, M., Brovkin, V., Lenton, T.M., Ye, H., Deyle, E., Sugihara, G.: 2015, Causal feedbacks in climate change. Nat. Clim. Chang. DOI .

    Google Scholar 

  • Volobuev, D.: 2006, “TOY” dynamo to describe the long-term solar activity cycles. Solar Phys. 238(2), 421. DOI .

    Article  ADS  Google Scholar 

  • Volobuev, D.M., Makarenko, N.G.: 2008, Forecast of the decadal average sunspot number. Solar Phys. 249(1), 121. DOI .

    Article  ADS  Google Scholar 

  • Volobuev, D.M., Makarenko, N.G.: 2016, The dynamic relation between activities in the northern and southern solar hemispheres. Geomagn. Aeron. 56(7), 880. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for useful discussions and suggestions that greatly improved the manuscript. The work was supported by the Russian Foundation for Basic Research, Project No. 15-01-09156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Volobuev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volobuev, D.M., Makarenko, N.G. Long-Term Pulses of Dynamic Coupling Between Solar Hemispheres. Sol Phys 292, 68 (2017). https://doi.org/10.1007/s11207-017-1092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1092-5

Keywords

Navigation