Solar Physics

, 292:43

Identification of Gleissberg Cycles and a Rising Trend in a 315-Year-Long Series of Sunspot Numbers

  • Jean-Louis Le Mouël
  • Fernand Lopes
  • Vincent Courtillot
Article

Abstract

We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700 – 2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.

Keywords

Solar cycle, observations Solar cycle, models Gleissberg cycle Sunspot number Singular spectrum analysis, Schwabe cycle Secular trend 

References

  1. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. Space Sci. Rev. 186, 35. DOI. ADSCrossRefGoogle Scholar
  2. Cole, T.W.: 1973, Periodicities in solar activity. Solar Phys. 30, 103. ADSCrossRefGoogle Scholar
  3. Feynman, J., Fougere, P.F.: 1984, Eighty-eight year cycle in solar terrestrial phenomena confirmed. J. Geophys. Res. 89, 3023. ADSCrossRefGoogle Scholar
  4. Feynman, J., Ruzmaikin, A.: 2011, The Sun’s strange behaviour: Maunder minimum or Gleissberg cycle? Solar Phys. 273, 351. ADSCrossRefGoogle Scholar
  5. Feynman, J., Ruzmaikin, A.: 2013, The centennial Gleissberg cycle and its association with extended minima. J. Geophys. Res. Space Phys. 119, 6027. ADSCrossRefGoogle Scholar
  6. Garcia, A., Mouradian, Z.: 1998, The Gleissberg cycle of minima. Solar Phys. 180, 495. ADSCrossRefGoogle Scholar
  7. Gleissberg, W.: 1939, A long-periodic fluctuation of the sunspot numbers. Observatory 62, 158. ADSGoogle Scholar
  8. Golub, G., Kahan, W.: 1965, Calculating the singular values and pseudoinverse of a matrix. J. Soc. Ind. Appl. Math., Ser. B, Numer. Anal. 2, 205. MathSciNetCrossRefMATHGoogle Scholar
  9. Gao, P.X.: 2016, Long-term trend of sunspot numbers. Astrophys. J. 830, 140. DOI. ADSCrossRefGoogle Scholar
  10. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375. ADSCrossRefGoogle Scholar
  11. Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI. ADSCrossRefGoogle Scholar
  12. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: A new solar activity reconstruction. Solar Phys. 181, 491. DOI. ADSCrossRefGoogle Scholar
  13. Kittler, J., Young, P.C.: 1973, A new approach to feature selection based on the Karhunen–Loeve expansion. Pattern Recognit. 5, 335. MathSciNetCrossRefGoogle Scholar
  14. McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: 2013, A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Solar Phys. 286, 609. DOI. ADSCrossRefGoogle Scholar
  15. Nagovitsyn, Yu.A.: 1997, A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past. Astron. Lett. 23, 742. ADSGoogle Scholar
  16. Nagovitsyn, Yu.A.: 2001, Solar activity during the last two millennia: Solar patrol in ancient and medieval China. Geomagn. Aeron. 41, 680. Google Scholar
  17. Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: 2002, Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Solar Phys. 211, 371. ADSCrossRefGoogle Scholar
  18. Otaola, G.A., Zenteno, G.: 1983, On the existence of long term periodicities in solar activity. Solar Phys. 89, 209. ADSCrossRefGoogle Scholar
  19. Rozelot, J.P.: 1994, On the stability of the 11-year solar cycle period (and a few others). Solar Phys. 149, 149. ADSCrossRefGoogle Scholar
  20. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI. ADSCrossRefGoogle Scholar
  21. Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: The backbone method. Solar Phys. 291, 2653. DOI. ADSCrossRefGoogle Scholar
  22. Usoskin, I.G., Kovaltsov, G.A., Lockwood, M., Mursula, K., Owens, M.J., Solanki, S.K.: 2016, A new calibrated sunspot group series since 1749: Statistics of active day fractions. Solar Phys. 291, 2685. DOI. ADSCrossRefGoogle Scholar
  23. Vautard, R., Ghil, M.: 1989, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395. ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Vautard, R., Yiou, P., Ghil, M.: 1992, Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D 58, 95. ADSCrossRefGoogle Scholar
  25. Waldmeier, M.: 1957, Der lange Sonnenzyklus. Z. Astrophys. 43, 149. ADSGoogle Scholar
  26. Wittmann, A.: 1978, The sunspot cycle before the Maunder minimum. Astron. Astrophys. 66, 93. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Geomagnetism and Paleomagnetism, Institut de Physique du Globe de ParisSorbonne Paris CitéParisFrance

Personalised recommendations