Solar Physics

, Volume 291, Issue 9–10, pp 3045–3060 | Cite as

The New Sunspot-Number Index and Solar-Cycle Characteristics

  • V. M. S. Carrasco
  • A. J. P. Aparicio
  • J. M. VaqueroEmail author
  • M. C. Gallego
Sunspot Number Recalibration


We revisit several characteristics of the solar cycle using the new version of the sunspot-number index. Thus, we calculated several correlations, including the recent Solar Cycles 23 and 24 in the analysis. We applied two smoothing methods to the sunspot number: i) the usual 13-month running mean and ii) a 24-month Gaussian filter. Each of these methods contains two analyses: on the one hand, we consider all of the solar cycles available, and on the other hand, only those from Solar Cycle 10 onward. It can be seen that this new version improves or yields similar results for the correlations with respect to other works using the old version of the sunspot number, except for the amplitude–descending time effect and the linear fit of the secular trend. However, employing the same methodology in the analysis and considering the same solar cycles, it can be seen that the new sunspot number, in general, does not improve the correlations with respect to the old sunspot number and, moreover, the correlations obtained with the Gaussian filter generally are stronger than those with the 13-month running mean. Furthermore, from a sinusoidal fit to the solar-maximum amplitudes of the whole series, we have obtained a periodicity of the Gleissberg cycle equal to 97.7 years (\({\approx}\,8.9\) solar cycles) for the 13-month running mean and 99.8 years (\({\approx}\,9.1\) solar cycles) for the Gaussian filter. Lastly, the Waldmeier effect, the modified Waldmeier effect, the amplitude–period effect, the amplitude–minimum effect, and the even–odd effect are characteristics with high correlation coefficients and significance levels; the sinusoidal fit applied to the solar-maximum amplitudes yields a lower correlation coefficient value but a high significance level; and both the amplitude–descending-time effect and secular trend of the solar activity have weaker correlation coefficients and significance levels.


Solar cycle Solar activity Sunspot-number series 



Support from the Junta de Extremadura (Research Group Grants GR15137) and from the Ministerio de Economía y Competitividad of the Spanish Government (AYA2014-57556-P) is gratefully acknowledged. A.J.P. Aparicio thanks the Ministerio de Educación, Cultura y Deporte for the award of a FPU grant.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Aparicio, A.J.P., Vaquero, J.M., Gallego, M.C.: 2012, J. Space Weather Space Clim. 2, A12.  DOI. CrossRefGoogle Scholar
  2. Carrasco, V.M.S., Vaquero, J.M., Gallego, M.C.: 2012, Astron. J. 144, 69.  DOI. ADSCrossRefGoogle Scholar
  3. Carrasco, V.M.S., Vaquero, J.M., Gallego, M.C., Sánchez-Bajo, F.: 2016, Solar Phys. 291, 1.  DOI. CrossRefGoogle Scholar
  4. Charbonneau, P., Dikpati, M.: 2000, Astrophys. J. 543, 1027.  DOI. ADSCrossRefGoogle Scholar
  5. Chernosky, E.J.: 1954, Publ. Astron. Soc. Pac. 66, 241.  DOI. ADSCrossRefGoogle Scholar
  6. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Space Sci. Rev. 186, 35.  DOI. ADSCrossRefGoogle Scholar
  7. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M.: 2015, Space Weather 13, 529.  DOI. ADSCrossRefGoogle Scholar
  8. Du, Z.: 2006, Astron. J. 132, 1485. ADSCrossRefGoogle Scholar
  9. Du, Z., Du, S.: 2006, Solar Phys. 238, 431.  DOI. ADSCrossRefGoogle Scholar
  10. Du, Z.-L., Wang, H.-N., He, X.-T.: 2006, Chin. J. Astron. Astrophys. 6, 489. ADSCrossRefGoogle Scholar
  11. Gleissberg, W.: 1939, Observatory 62, 158. ADSGoogle Scholar
  12. Gnevyshev, M.N., Ohl, A.I.: 1948, Astron. Zh. 25, 18. Google Scholar
  13. Hathaway, D.H.: 2015, Living Rev. Solar Phys. 12, 4.  DOI. ADSCrossRefGoogle Scholar
  14. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357.  DOI. ADSCrossRefGoogle Scholar
  15. Hoyt, D.V., Schatten, K.H.: 1998, Solar Phys. 179, 189.  DOI. ADSCrossRefGoogle Scholar
  16. Kane, R.P.: 2008, J. Atmos. Solar-Terr. Phys. 70, 1533.  DOI. ADSCrossRefGoogle Scholar
  17. Solanki, S.K., Krivova, N.A., Schüssler, M., Fligge, M.: 2002, Astron. Astrophys. 396, 1029.  DOI. ADSCrossRefGoogle Scholar
  18. Svalgaard, L., Schatten, K.H.: 2016, Solar Phys. 291, 1.  DOI. CrossRefGoogle Scholar
  19. Usoskin, I.G.: 2013, Living Rev. Solar Phys. 10, 1.  DOI. ADSCrossRefGoogle Scholar
  20. Usoskin, I.G., Kovaltsov, G.A., Lockwood, M., Mursula, K., Owens, M., Solanki, S.K.: 2016, Solar Phys. 291, 1.  DOI. CrossRefGoogle Scholar
  21. Vaquero, J.M.: 2007, Adv. Space Res. 40, 929.  DOI. ADSCrossRefGoogle Scholar
  22. Vaquero, J.M., Vázquez, M.: 2009, The Sun Recorded Through History, Springer, Berlin.  DOI. Google Scholar
  23. Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lefèvre, L., Gallego, M.C., Arlt, R., Aparicio, A.J.P., Richard, J.-G., Howe, R.: 2016, Solar Phys. 291, 1.  DOI. CrossRefGoogle Scholar
  24. Waldmeier, M.: 1935, Astron. Mitt. 14, 105. ADSGoogle Scholar
  25. Wilson, R.M.: 1988, Solar Phys. 115, 397.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • V. M. S. Carrasco
    • 1
  • A. J. P. Aparicio
    • 1
  • J. M. Vaquero
    • 2
    • 3
    Email author
  • M. C. Gallego
    • 1
    • 2
  1. 1.Departamento de FísicaUniversidad de ExtremaduraBadajozSpain
  2. 2.Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS)Universidad de ExtremaduraBadajozSpain
  3. 3.Departamento de FísicaUniversidad de ExtremaduraMérida (Badajoz)Spain

Personalised recommendations