Skip to main content
Log in

Variations in Ratio and Correlation of Solar Magnetic Fields in the Fe i 525.02 nm and Na i 589.59 nm Lines According to Mount Wilson Measurements During 2000 – 2012

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Variations in the solar magnetic-field ratio over 13 years are analyzed, relying on the comparison of simultaneous measurements in two spectral lines at the Mount Wilson Observatory (MWO). The ratio and correlation coefficient are calculated over the general working range of measured magnetic-field values and in various ranges of the field magnitudes. Variations in both parameters are considered. We found the following tendencies: i) the parameters show changes with the cycle of solar activity in the general case; ii) their dependence on magnetic-field magnitude is a nonlinear function of time, and this is especially pronounced in the ratio behavior; iii) several separate ranges of the field magnitudes can be distinguished based on the behavioral patterns of the ratio variations. Correspondences between these ranges and the known structural objects of the solar atmosphere are discussed. This permits us to reach the conclusion that the dependence of parameters considered on the magnetic-field magnitude and time is connected with the variety of magnetic structural components and their cyclic rearrangements. The results represented may be useful for solving interpretation problems of solar magnetic-field measurements and for the cross-calibration of applicable instruments. They can also be of interest for tasks related to the creation of a uniform long temporal series of solar magnetic-field data from various sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Andryeyeva, O.A., Stepanian, N.N.: 2008, Background magnetic fields during last three cycles of solar activity. Astron. Nachr. 329, 579. ADS . DOI .

    Article  ADS  Google Scholar 

  • Andryeyeva, O.A., Zyelyk, Y.I., Stepanian, N.N., Tsap, Y.T.: 2010, Regularities in the growth of background magnetic fields. Bull. Crimean Astrophys. Obs. 106, 8. ADS . DOI .

    Article  ADS  Google Scholar 

  • Arge, C.N., Hildner, E., Pizzo, V.J., Harvey, J.W.: 2002, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107, 1319. ADS . DOI .

    Article  Google Scholar 

  • Athay, R.G. (ed.): 1976, The Solar Chromosphere and Corona: Quiet Sun, Astrophys. Space Science Lib. 53. ADS . DOI .

    Google Scholar 

  • Balthasar, H., Demidov, M.L.: 2012, Spectral inversion of multiline full-disk observations of quiet sun magnetic fields. Solar Phys. 280, 355. ADS . DOI .

    Article  ADS  Google Scholar 

  • Berger, T.E., Lites, B.W.: 2003, Weak-field magnetogram calibration using advanced stokes polarimeter flux density maps – II. SOHO/MDI full-disk mode calibration. Solar Phys. 213, 213. ADS . DOI .

    Article  ADS  Google Scholar 

  • Bevington, P.R.: 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York. ADS .

    Google Scholar 

  • Bruls, J.H.M.J., Lites, B.W., Murphy, G.A.: 1991, Non-LTE formation heights of stokes profiles of Fe I lines. In: November, L.J. (ed.) Proceedings of the 11th National Solar Observatory/Sacramento Peak Summer Workshop, Solar Polarimetry, NSO, Sunspot, NM 444.

    Google Scholar 

  • Chapman, G.A., Sheeley, N.R. Jr.: 1968, The Photospheric Network. Solar Phys. 5, 442. ADS . DOI .

    Article  ADS  Google Scholar 

  • Davis, J.C.: 1986, Statistics and Data Analysis in Geology.

    Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2009, Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue. Solar Phys. 260, 261. ADS . DOI .

    Article  ADS  Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2011, On the diagnostics of the quiet sun magnetic fields: Multi-line spectro-polarimetric observations and inversion results. In: Kuhn, J.R., Harrington, D.M., Lin, H., Berdyugina, S.V., Trujillo-Bueno, J., Keil, S.L., Rimmele, T. (eds.) Solar Polarization CS-6, Astron. Soc. Pacific, San Francisco. 189. 437, ADS .

    Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2012, On multi-line spectro-polarimetric diagnostics of the quiet sun’s magnetic fields. Statistics, inversion results and effects on the SOHO/MDI magnetogram calibration. Solar Phys. 276, 43. ADS . DOI .

    Article  ADS  Google Scholar 

  • Demidov, M.L., Golubeva, E.M.: 2011, Comparison of solar large-scale magnetic field strengths from selected data sets at different solar activity phases. Soln.-Zemn. Fiz. 18, 58 (in Russian)

    Google Scholar 

  • Demidov, M.L., Golubeva, E.M., Balthasar, H., Staude, J., Grigoryev, V.M.: 2008, Comparison of solar magnetic fields measured at different observatories: Peculiar strength ratio distributions across the disk. Solar Phys. 250, 279. ADS . DOI .

    Article  ADS  Google Scholar 

  • DeVore, C.R., Boris, J.P., Sheeley, N.R. Jr.: 1984, The concentration of the large-scale solar magnetic field by a meridional surface flow. Solar Phys. 92, 1. ADS . DOI .

    Article  ADS  Google Scholar 

  • DeVore, C.R., Boris, J.P., Young, T.R. Jr., Sheeley, N.R., Harvey, K.L.: 1985, Numerical simulations of large-scale solar magnetic fields. Aust. J. Phys. 38, 999. ADS .

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr.: 1979, Large-scale solar velocity fields. Solar Phys. 63, 3. ADS . DOI .

    Article  ADS  Google Scholar 

  • Győri, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen Observatory. In: Prasad Choudhary, D., Strassmeier, K.G. (eds.) Physics of Sun and Star Spots, IAU Symp., 273, Cambridge University Press, Cambridge, 403. ADS . DOI .

    Google Scholar 

  • Harvey, J., Livingston, W.: 1969, Magnetograph measurements with temperature-sensitive lines. Solar Phys. 10, 283. ADS . DOI .

    Article  ADS  Google Scholar 

  • Howard, R.: 1979, Evidence for large-scale velocity features on the Sun. Astrophys. J. Lett. 228, L45. ADS . DOI .

    Article  ADS  Google Scholar 

  • Howard, R., Stenflo, J.O.: 1972, On the filamentary nature of solar magnetic fields. Solar Phys. 22, 402. ADS . DOI .

    Article  ADS  Google Scholar 

  • Ioshpa, B.A., Obridko, V.N., Chertoprud, V.E.: 2007, Small-scale stochastic structure of the solar magnetic field. Astron. Lett. 33, 844. ADS . DOI .

    Article  ADS  Google Scholar 

  • Jones, H.P., Ceja, J.A.: 2001, Preliminary comparison of magnetograms from KPVT/SPM, SOHO/MDI and \(\mbox{GONG}^{+}\). In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pacific, San Francisco. 87. ADS .

    Google Scholar 

  • Kawakami, S., Makita, M.: 1993, Magnetograph observations of solar faculae. Publ. Astron. Soc. Japan 45, 255. ADS .

    ADS  Google Scholar 

  • Kotov, V.A.: 2008a, A paradox in measuring the magnetic field of the Sun. Bull. Crimean Astrophys. Obs. 104, 79. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kotov, V.A.: 2008b, Mean absolute strength of the solar magnetic field in 1968 – 2006. Astron. Rep. 52, 419. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kotov, V.A.: 2012, Enigmas in measurements of solar magnetic field. Bull. Crimean Astrophys. Obs. 108, 20. ADS . DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295. ADS . DOI .

    Article  ADS  Google Scholar 

  • Mordvinov, A.V., Yazev, S.A.: 2014, Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 289, 1971. ADS . DOI .

    Article  ADS  Google Scholar 

  • Norton, A.A., Ulrich, R.K.: 2000, Measuring magnetic oscillations in the solar photosphere: Coordinated observations with MDI, ASP and MWO. Solar Phys. 192, 403. ADS . DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2009, Anomalies in the evolution of global and large-scale solar magnetic fields as the precursors of several upcoming low solar cycles. Astron. Lett. 35, 247. ADS . DOI .

    Article  ADS  Google Scholar 

  • Pietarila, A., Bertello, L., Harvey, J.W., Pevtsov, A.A.: 2013, Comparison of ground-based and space-based longitudinal magnetograms. Solar Phys. 282, 91. ADS . DOI .

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, Reidel, Dordrecht. ADS .

    Book  Google Scholar 

  • Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. ADS . DOI .

    Article  ADS  Google Scholar 

  • Sánchez Almeida, J.: 2003, Inter-network magnetic fields observed during the minimum of the solar cycle. Astron. Astrophys. 411, 615. ADS . DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr.: 1992, The flux-transport model and its implications. In: Harvey, K.L. (ed.) The Solar Cycle CS-27, Astron. Soc. Pacific, San Francisco. 1. ADS .

    Google Scholar 

  • Stenflo, J.O.: 1973, Magnetic-field structure of the photospheric network. Solar Phys. 32, 41. ADS . DOI .

    Article  ADS  Google Scholar 

  • Stenflo, J.O.: 2013, Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations. Astron. Astrophys. 555, A132. ADS . DOI .

    Article  ADS  Google Scholar 

  • Stenflo, J.O., Demidov, M.L., Bianda, M., Ramelli, R.: 2013, Calibration of the 6302/6301 Stokes V line ratio in terms of the 5250/5247 ratio. Astron. Astrophys. 556, A113. ADS . DOI .

    Article  ADS  Google Scholar 

  • Tran, T., Bertello, L., Ulrich, R.K., Evans, S.: 2005, Magnetic fields from SOHO MDI converted to the Mount Wilson 150 Foot Solar Tower Scale. Astrophys. J. Suppl. 156, 295. ADS . DOI .

    Article  ADS  Google Scholar 

  • Ulrich, R.K., Tran, T.: 2013, The global solar magnetic field – identification of traveling, long-lived ripples. Astrophys. J. 768, 189. ADS . DOI .

    Article  ADS  Google Scholar 

  • Ulrich, R.K., Henney, C.J., Schimpf, S., Fossat, E., Gelly, B., Grec, G., Loudagh, S., Schmider, F.-X., Palle, P., Regulo, C.: 1993, Modeling of integrated sunlight velocity measurements: The effect of surface darkening by magnetic fields. Astron. Astrophys. 280, 268. ADS .

    ADS  Google Scholar 

  • Ulrich, R.K., Evans, S., Boyden, J.E., Webster, L.: 2002, Mount Wilson Synoptic Magnetic Fields: Improved instrumentation, calibration, and analysis applied to the 2000 July 14 flare and to the evolution of the dipole field. Astrophys. J. Suppl. 139, 259. ADS . DOI .

    Article  ADS  Google Scholar 

  • Ulrich, R.K., Bertello, L., Boyden, J.E., Webster, L.: 2009, Interpretation of solar magnetic field strength observations. Solar Phys. 255, 53. ADS . DOI .

    Article  ADS  Google Scholar 

  • Wenzler, T., Solanki, S.K., Krivova, N.A., Fluri, D.M.: 2004, Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions. Astron. Astrophys. 427, 1031. ADS . DOI .

    Article  ADS  Google Scholar 

  • Zhang, H., Labonte, B., Li, J., Sakurai, T.: 2003, Analysis of vector magnetic fields in solar active regions by Huairou, Mees and Mitaka vector magnetographs. Solar Phys. 213, 87. ADS . DOI .

    Article  ADS  Google Scholar 

  • Zirin, H.: 1974, The magnetic structure of plages. In: Athay, R.G. (ed.) Chromospheric Fine Structure, IAU Symp. 56, Reidel, Dordrecht. 161. ADS .

    Chapter  Google Scholar 

Download references

Acknowledgments

This study analyzes data from the synoptic program at the 150-Foot Solar Tower of the Mt. Wilson Observatory. The Mt. Wilson 150-Foot Solar Tower is operated by UCLA, with funding from NASA, ONR and NSF, under agreement with the Mt. Wilson Institute. The author is grateful to the staff of the observatory, who regularly acquired data and provided the undisturbed operation of the website.

The author is grateful to L. Bertello for his comments concerning the cross-calibration stability of magnetograms, to R.K. Ulrich for the useful discussion about MWO data, to R.B. Teplitskaya for professional advice, to M.L. Demidov for his review of the study, to D.Yu. Kolobov for his valuable critical remarks on the manuscript, to J. Sutton for correcting the English, and to A. Kustov for his assistance in preparing of the LaTex code.

The author is grateful to the anonymous referee for the remarks and suggestions that helped to improve this article.

The author’s programs contain references to procedures by V. Grechnev and N. Meshalkina.

This work was supported by the projects II.16.3.1 and II.16.3.3 under the Program of Fundamental Research of SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Golubeva.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, E. Variations in Ratio and Correlation of Solar Magnetic Fields in the Fe i 525.02 nm and Na i 589.59 nm Lines According to Mount Wilson Measurements During 2000 – 2012. Sol Phys 291, 2213–2241 (2016). https://doi.org/10.1007/s11207-016-0973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0973-3

Keywords

Navigation