Solar Physics

, Volume 291, Issue 8, pp 2197–2212 | Cite as

Synchronized Helicity Oscillations: A Link Between Planetary Tides and the Solar Cycle?

Article

Abstract

Recent years have seen an increased interest in the question of whether the gravitational action of planets could have an influence on the solar dynamo. Without discussing the observational validity of the claimed correlations, we examine which possible physical mechanism might link the weak planetary forces with solar dynamo action. We focus on the helicity oscillations that were recently found in simulations of the current-driven, kink-type Tayler instability, which is characterized by an \(m=1\) azimuthal dependence. We show how these helicity oscillations may be resonantly excited by some \(m=2\) perturbations that reflect a tidal oscillation. Specifically, we speculate that the tidal oscillation of 11.07 years induced by the Venus–Earth–Jupiter system may lead to a 1:1 resonant excitation of the oscillation of the \(\alpha\)-effect. Finally, we recover a 22.14-year cycle of the solar dynamo in the framework of a reduced zero-dimensional \(\alpha\)\(\Omega\) dynamo model.

Keywords

Solar cycle Models helicity Theory 

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI. ADSCrossRefGoogle Scholar
  2. Babcock, H.W.: 1961, The topology of the suns magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI. ADSCrossRefGoogle Scholar
  3. Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration Sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307. Google Scholar
  4. Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI. ADSCrossRefGoogle Scholar
  5. Brandenburg, A.: 2005, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 625. DOI. CrossRefGoogle Scholar
  6. Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.: 1989, Inferring the Sun’s internal angular velocity from observed p-mode frequency splitting. Astrophys. J. 343, 526. DOI. ADSCrossRefGoogle Scholar
  7. Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI. ADSCrossRefGoogle Scholar
  8. Cébron, D., Hollerbach, R.: 2014, Tidally driven dynamos in a rotating sphere. Astrophys. J. Lett. 789, L25. DOI. ADSCrossRefGoogle Scholar
  9. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI. ADSCrossRefGoogle Scholar
  10. Charbonneau, P., Dikpati, M.: 2000, Stochastic fluctuations in a Babcock-model of the solar cycle. Astrophys. J. 543, 1027. DOI. ADSCrossRefGoogle Scholar
  11. Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI. ADSCrossRefGoogle Scholar
  12. Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI. ADSCrossRefGoogle Scholar
  13. Chiba, M., Tosa, M.: 1990, Swing excitation of galactic magnetic-fields induced by spiral density waves. Mon. Not. Roy. Astron. Soc. 244, 714. DOI. ADSGoogle Scholar
  14. Choudhuri, A.R., Karak, B.B.: 2009, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys. 9, 953. ADSCrossRefGoogle Scholar
  15. Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29. ADSGoogle Scholar
  16. Cole, T.W.: 1973, Periodicities in solar activities. Solar Phys. 30, 103. DOI. ADSCrossRefGoogle Scholar
  17. Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI. ADSCrossRefGoogle Scholar
  18. Courvoisier, A., Hughes, D.W., Tobias, S.M.: 2006, \(\alpha\) effect in a family of chaotic flows. Phys. Rev. Lett. 96, 034503. DOI. ADSCrossRefGoogle Scholar
  19. Davidson, P.A.: 2001, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge. CrossRefMATHGoogle Scholar
  20. De Jager, C., Versteegh, G.: 2005, Do planetary motions drive solar variability? Solar Phys. 229, 175. DOI. ADSCrossRefGoogle Scholar
  21. Dikpati, M., Gilman, P.: 2001, Flux-transport dynamos with alpha-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428. DOI. ADSCrossRefGoogle Scholar
  22. D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621. ADSGoogle Scholar
  23. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. DOI. ADSCrossRefGoogle Scholar
  24. Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949. ADSGoogle Scholar
  25. Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI. ADSCrossRefGoogle Scholar
  26. Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI. ADSCrossRefGoogle Scholar
  27. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI. ADSCrossRefGoogle Scholar
  28. Herreman, W., Nore, C., Cappanera, L., Guermond, J.-L.: 2015, Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79. DOI. ADSMathSciNetCrossRefGoogle Scholar
  29. Hoyng, P.: 1993, Helicity fluctuations in mean-field theory: An explanation for the variability of the solar cycle? Astron. Astrophys. 272, 321. ADSMathSciNetGoogle Scholar
  30. Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets. NASA/TM-2007-214817, 1. Google Scholar
  31. Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527. DOI. ADSCrossRefGoogle Scholar
  32. Jose, P.D.: 1965, Suns motion and sunspots. Astron. J. 70, 193. DOI. ADSCrossRefGoogle Scholar
  33. Krause, F., Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie Verlag, Berlin. MATHGoogle Scholar
  34. Leighton, R.B.: 1964, Transport of magnetic field on the Sun. Astrophys. J. 140, 1547. DOI. ADSCrossRefMATHGoogle Scholar
  35. Meir, A.J., Schmidt, P.G., Bakhtiyarov, S.I., Overfelt, R.A.: 2004, Numerical simulation of steady liquid – Metal flow in the presence of a static magnetic field. J. Appl. Mech. 71, 786. DOI. ADSCrossRefMATHGoogle Scholar
  36. Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI. ADSCrossRefGoogle Scholar
  37. Palus, M., Kurths, J., Schwarz, U., Novotna, D., Charvatova, I.: 2000, Is the solar activity cycle synchronized with the solar inertial motion? Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 2519. DOI. MATHGoogle Scholar
  38. Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI. ADSMathSciNetCrossRefGoogle Scholar
  39. Pikovsky, A., Rosenblum, M., Kurths, J.: 2001, Synchronizations: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge. CrossRefMATHGoogle Scholar
  40. Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI. ADSCrossRefGoogle Scholar
  41. Proctor, M.: 2006, Dynamo Action and the Sun, EAS Pub. Ser. 21, 241. DOI. Google Scholar
  42. Rädler, K., Stepanov, R.: 2006, Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow. Phys. Rev. E 73, 056311. DOI. ADSCrossRefGoogle Scholar
  43. Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley-VCH, Berlin. CrossRefGoogle Scholar
  44. Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI. CrossRefGoogle Scholar
  45. Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI. ADSCrossRefGoogle Scholar
  46. Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI. ADSCrossRefGoogle Scholar
  47. Schmitt, D., Schüssler, M., Ferriz Mas, A.: 1996, Intermittent solar activity by an on-off dynamo. Astron. Astrophys. 311, L1. ADSGoogle Scholar
  48. Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI. ADSCrossRefGoogle Scholar
  49. Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI. ADSCrossRefGoogle Scholar
  50. Steenbeck, M., Krause, F.: 1969, Zur Dynamotheorie stellarer und planetarer Magnetfelder. I. Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron. Nachr. 291, 49. DOI. ADSCrossRefMATHGoogle Scholar
  51. Steenbeck, M., Krause, F., Rädler, K.-H.: 1966, Berechnung der mittleren Lorentz-Feldstärke vxB für ein elektrisch leitendes Medium in turbulenter durch Coriolis-Kräfte beeinflusster Bewegung. Z. Naturforsch. A, J. Phys. Sci. 21(4), 369. DOI. ADSGoogle Scholar
  52. Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI. ADSCrossRefGoogle Scholar
  53. Stix, M.: 1972, Nonlinear dynamo waves. Astron. Astrophys. 20, 9. ADSMATHGoogle Scholar
  54. Svensmark, H., Friis-Christensen, E.: 1997, Variation of cosmic ray flux and global cloud coverage – A missing link in solar-climate relationships. J. Atmos. Solar-Terr. Phys. 59, 1225. DOI. ADSCrossRefGoogle Scholar
  55. Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI. ADSCrossRefGoogle Scholar
  56. Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields-I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI. ADSCrossRefGoogle Scholar
  57. Vainshtein, S.I., Cattaneo, F.: 1992, Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165. DOI. ADSCrossRefGoogle Scholar
  58. Weber, M.A., Fan, Y., Miesch, M.S.: 2013, Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: Constraining the dynamo field strength. Solar Phys. 287, 239. DOI. ADSCrossRefGoogle Scholar
  59. Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI. ADSCrossRefGoogle Scholar
  60. Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI. ADSCrossRefGoogle Scholar
  61. Weiss, N.O., Tobias, S.M.: 2016, Supermodulation of the Sun’s magnetic activity: The effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI. ADSCrossRefGoogle Scholar
  62. Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI. ADSCrossRefGoogle Scholar
  63. Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin-orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI. ADSCrossRefGoogle Scholar
  64. Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI. ADSCrossRefGoogle Scholar
  65. Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI. ADSMathSciNetCrossRefGoogle Scholar
  66. Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI. ADSCrossRefMATHGoogle Scholar
  67. Zhang, K., Chan, K.H., Zou, J., Liao, X., Schubert, G.: 2003, A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663. DOI. ADSCrossRefGoogle Scholar
  68. Zhang, H., Moss, D., Kleeorin, N., Kuzanyan, K., Rogachevskii, I., Sokoloff, D., Gao, Y., Xu, H.: 2012, Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys. J. 751. DOI.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden – RossendorfDresdenGermany

Personalised recommendations