Advertisement

Solar Physics

, Volume 291, Issue 8, pp 2457–2472 | Cite as

Re-evaluation of Predictive Models in Light of New Data: Sunspot Number Version 2.0

  • A. Gkana
  • L. Zachilas
Article

Abstract

The original version of the Zürich sunspot number (Sunspot Number Version 1.0) has been revised by an entirely new series (Sunspot Number Version 2.0). We re-evaluate the performance of our previously proposed models for predicting solar activity in the light of the revised data. We perform new monthly and yearly predictions using the Sunspot Number Version 2.0 as input data and compare them with our original predictions (using the Sunspot Number Version 1.0 series as input data). We show that our previously proposed models are still able to produce quite accurate solar-activity predictions despite the full revision of the Zürich Sunspot Number, indicating that there is no significant degradation in their performance. Extending our new monthly predictions (July 2013 – August 2015) by 50 time-steps (months) ahead in time (from September 2015 to October 2019), we provide evidence that we are heading into a period of dramatically low solar activity. Finally, our new future long-term predictions endorse our previous claim that a prolonged solar activity minimum is expected to occur, lasting up to the year \(\approx 2100\).

Keywords

Monthly sunspot number Yearly sunspot number Re-evaluation Solar activity predictions 

References

  1. Barnett, W.A., Serletis, A., Serletis, D.: 2006, Nonlinear and complex dynamics in real systems. Int. J. Nonlinear Sci. Numer. Simul. 7, 191.  DOI. CrossRefMATHGoogle Scholar
  2. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35.  DOI. ADSCrossRefGoogle Scholar
  3. Gkana, A., Zachilas, L.: 2015, Sunspot numbers: Data analysis, predictions and economic impacts. J. Eng. Sci. Technol. Rev. 8, 79. www.jestr.org/downloads/Volume8Issue1/fulltext148115.pdf. Google Scholar
  4. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: A new solar activity reconstruction. Solar Phys. 179, 189.  DOI. ADSCrossRefGoogle Scholar
  5. Kane, R.P.: 2008, Prediction of solar cycle maximum using solar cycle lengths. Solar Phys. 248, 203.  DOI. ADSCrossRefGoogle Scholar
  6. Kantz, H.: 1994, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77.  DOI. ADSCrossRefGoogle Scholar
  7. McCue, L.S., Troesch, A.W.: 2011, Use of Lyapunov exponents to predict chaotic vessel motions. In: Neves, M.A.S., et al. (eds.) Contemporary Ideas on Ship Stability and Capsizing in Waves, Springer, Dordrecht, 415.  DOI. CrossRefGoogle Scholar
  8. Pikovsky, A., Politi, A.: 2016, Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge University Press, Cambridge.  DOI. CrossRefMATHGoogle Scholar
  9. Pikovsky, A., Rosenblum, M., Kurths, J.: 2001, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.  DOI. CrossRefMATHGoogle Scholar
  10. Wilson, R.M.: 1987, On the distribution of sunspot cycle periods. J. Geophys. Res. 92, 10101.  DOI. ADSCrossRefGoogle Scholar
  11. Wolf, A.: 1986, Quantifying chaos with Lyapunov exponents. In: Holden, A.V. (ed.) Nonlinear Science: Theory and Applications, Princeton University Press, Princeton.  DOI. Google Scholar
  12. Zachilas, L., Gkana, A.: 2015, On the verge of a grand solar minimum: A second Maunder minimum? Solar Phys. 290, 1457.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of ThessalyVolosGreece

Personalised recommendations