Solar Physics

, Volume 291, Issue 9–10, pp 3081–3102 | Cite as

On-line Tools for Solar Data Compiled at the Debrecen Observatory and Their Extensions with the Greenwich Sunspot Data

  • T. BaranyiEmail author
  • L. Győri
  • A. Ludmány
Sunspot Number Recalibration


The primary task of the Debrecen Heliophysical Observatory (DHO) has been the most detailed, reliable, and precise documentation of the solar photospheric activity since 1958. This long-term effort resulted in various solar catalogs based on ground-based and space-borne observations. A series of sunspot databases and on-line tools were compiled at DHO: the Debrecen Photoheliographic Data (DPD, 1974 –), the dataset based on the Michelson Doppler Imager (MDI) of the Solar and Heliospheric Observatory (SOHO) called SOHO/MDI-Debrecen Data (SDD, 1996 – 2010), and the dataset based on the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) called SDO/HMI–Debrecen Data (HMIDD, 2010 – ). User-friendly web-presentations and on-line tools were developed to visualize and search data. As a last step of the compilation, the revised version of Greenwich Photoheliographic Results (GPR, 1874 – 1976) catalog was converted to DPD format, and a homogeneous sunspot database covering more than 140 years was created. The database of images for the GPR era was completed with the full-disc drawings of the Hungarian historical observatories Ógyalla and Kalocsa (1872 – 1919) and with the polarity drawings of Mount Wilson Observatory. We describe the main characteristics of the available data and on-line tools.


Sunspots Active regions Magnetic fields 



This work was supported by the European Community’s Seventh Framework Program (FP7 SP1-Cooperation) under grant agreement No. 284461 (EHEROES). The various tasks related to the databases and tools described in this article were supported during the past 23 years by the following grants: European Community’s Seventh Framework Programme (FP7/2007 – 2015) under grant agreement No. 284461 (EHEROES, Mar. 2012 – Feb. 2015) and No. 218816 (SOTERIA, Nov. 2008 – Oct. 2011); ESA PECS contracts No. 98017 (2004 – 2007) and No. C98081 (2009 – 2012); National Development Agency under grant agreement No. BONUS_HU_08/2009-003 (2010 – 11) and TÁMOP 4.2.2.C-11/1/KONV/2012-0015 (2012 – 13); U.S.-Hungarian Joint Fund for Science and Technology under contract No. 95a-524 (1996 – 1998); SCOSTEP supplemental STEP grant (1995); Hungarian Ministry of Cultural Heritage under Millenium Program grant agreement No. SzÖP422 (1999 – 2001); Grants of the Hungarian National Foundation for Scientific Research Nos. OTKA T037725 (2002 – 2005), T025640 (1998 – 2000), T019829 (1996 – 1999), T014036 (1994 – 1996), T007422 (1993 – 1996), F4142 (1992 – 1995), P31104 (1998), and U21342 (1996). We thank the referees and grant providers for supporting our proposals.

We express our deepest gratitude to the colleagues at the collaborating observatories for participating in the daily routine observations and putting the necessary material at our disposal. The contributing observatories taking white-light full-disc and/or magnetic observations were: Abastumani Astrophysical Observatory (Georgia), Astronomical Observatory of Ural State University (Russia), INAF-Catania Astrophysical Observatory (Italy), Crimean Astrophysical Observatory (Russia), Ebro Observatory (Spain), Helwan Observatory (Egypt), Huairou Solar Observing Station of National Astronomical Observatories of CAS (China), Institute of Geophysics and Astronomy of Cuba (Cuba), Kanzelhöhe Solar Observatory (Austria), Kiev University Observatory (Ukraine), Pulkovo Observatory and its Kislovodsk Observing Station (Russia), Kodaikanal Observatory (India), Mauna Loa Solar Observatory (USA), Mount Wilson Observatory (USA), San Fernando Observatory (USA), Solar Observatory of National Astronomical Observatory of Japan (Japan), Rome Astronomical Observatory (Italy), Royal Observatory of Belgium (USET data/image of Uccle/Brussels, Belgium), Royal Greenwich Observatory (UK), Sayan Observatory of Institute of Solar-Terrestrial Physics of Siberian Department of RAS (Russia), Tashkent Observatory (Uzbekistan), Ussuriysk Astrophysical Observatory of Far-Eastern Branch of the RAS (Russia), Valašské Meziříčí Observatory (Czech Republic).

The Mount Wilson white-light full-disc scans are available thanks to the Mt. Wilson Solar Photographic Archive Digitization Project supported by the National Science Foundation (NSF) under Grant No. 0236682. The magnetic database includes data from the synoptic program at the 150-Foot Solar Tower of the Mount Wilson Observatory. The Mt. Wilson 150-Foot Solar Tower is operated by UCLA, with funding from NASA, ONR and NSF, under agreement with the Mt. Wilson Institute. The observations of Kanzelhöhe Solar Observatory are available by courtesy of the Central European Solar ARchives (CESAR). The Michelson Doppler Imager (MDI) data are used by courtesy of the SOHO/MDI research group at Stanford University. Solar and Heliospheric Observatory (SOHO) is a mission of international cooperation between ESA and NASA. The SDO/HMI images are available by courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. NSO/Kitt Peak magnetic data used here are produced cooperatively by NSF, NASA/GSFC, and NOAA/SEL. We acknowledge the courtesy of editors of Solnechnie Dannie solar catalog, who permit the use of magnetic-polarity drawings observed by several contributing observatories. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the NSF. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Inter-American Observatory. Data used here from Mees Solar Observatory, University of Hawaii, are produced with the support of NASA grant NNG06GE13G. We acknowledge the courtesy of Yunnan Astronomical Observatory (YNAO) for permitting the use of magnetic-polarity drawings published in Publications of Yunnan Observatory. The images of Precision Solar Photometric Telescope (PSPT) at Mauna Loa are available by courtesy of the Mauna Loa Solar Observatory, operated by the High Altitude Observatory, as part of the National Center for Atmospheric Research (NCAR). NCAR is supported by the NSF. We appreciate the long-term work of NOAA/NGDC providing a wide range of scientific products and services for solar physics, and publishing the volumes of Solar-Geophysical Data (SGD).

We thank Norbert Nagy, who was a programmer mathematician at DHO, for playing an important role in development of the on-line tools and data pipeline. We are grateful to our colleagues at DHO and at the collaborating institutes who helped the data evaluation and participated in the observations during the last decades.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Baranyi, T.: 2015, Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy’s law. Mon. Not. Roy. Astron. Soc. 447, 1857. ADS.  DOI. ADSCrossRefGoogle Scholar
  2. Baranyi, T., Győri, L., Ludmány, A., Coffey, H.E.: 2001, Comparison of sunspot area data bases. Mon. Not. Roy. Astron. Soc. 323, 223. ADS.  DOI. ADSCrossRefGoogle Scholar
  3. Baranyi, T., Király, S., Coffey, H.E.: 2013, Indirect comparison of Debrecen and Greenwich daily sums of sunspot areas. Mon. Not. Roy. Astron. Soc. 434, 1713. ADS.  DOI. ADSCrossRefGoogle Scholar
  4. Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R.A.M., Koeckelenbergh, A., Wauters, L.: 2007, From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv. Space Res. 40, 919. ADS.  DOI. ADSCrossRefGoogle Scholar
  5. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. ADS.  DOI. ADSCrossRefGoogle Scholar
  6. Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2016, A solar irradiance climate data record. Bull. Am. Meteorol. Soc.  DOI. Early Online Releases. Google Scholar
  7. Dezső, L.: 1982, Debrecen heliophysical observatory. Solar Phys. 79, 195. ADS.  DOI. ADSCrossRefGoogle Scholar
  8. Dezső, L.: 1987, An account of the Greenwich photoheliographic results of 1874 – 1976 and of Debrecen’s first catalog of 1977. Publ. Debr. Heliophys. Obs., Heliogr. Ser. 1, 231. ADS. ADSGoogle Scholar
  9. Dezső, L., Gerlei, O., Kovács, Á.: 1987, Photoheliographic results for the year 1977. Publ. Debr. Heliophys. Obs., Heliogr. Ser. 1, 11. ADS. ADSGoogle Scholar
  10. Erwin, E.H., Coffey, H.E., Denig, W.F., Willis, D.M., Henwood, R., Wild, M.N.: 2013, The Greenwich photo-heliographic results (1874 – 1976): initial corrections to the printed publications. Solar Phys. 288, 157. ADS.  DOI. ADSCrossRefGoogle Scholar
  11. Gyenge, N., Baranyi, T., Ludmány, A.: 2014, Migration and extension of solar active longitudinal zones. Solar Phys. 289, 579. ADS.  DOI. ADSCrossRefGoogle Scholar
  12. Gyenge, N., Korsós, M.B., Baranyi, T., Ludmány, A.: 2015, Data base and tool for studying of active region magnetic configuration and positions of solar flares. [Downloaded: 1 November 2015].
  13. Gyenge, N., Ballai, I., Baranyi, T.: 2016, Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares. Mon. Not. Roy. Astron. Soc. 459, 3532. ADS.  DOI. ADSCrossRefGoogle Scholar
  14. Gyenge, N., Ludmány, A., Baranyi, T.: 2016, Active longitude and solar flare occurrences. Astrophys. J. 818, 127. ADS.  DOI. ADSCrossRefGoogle Scholar
  15. Győri, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. ADS.  DOI. ADSCrossRefGoogle Scholar
  16. Győri, L.: 2005, Automated determination of the alignment of solar images. Hvar Obs. Bull. 29, 299. ADS. ADSGoogle Scholar
  17. Győri, L.: 2012, Study of differences between sunspot and white light facular area data determined from SDO/HMI and SOHO/MDI observations. Solar Phys. 280, 365. ADS.  DOI. ADSCrossRefGoogle Scholar
  18. Győri, L., Baranyi, T., Muraközy, J., Ludmány, A.: 2005, Recent advances in the Debrecen sunspot catalogs. Mem. Soc. Astron. Ital. 76, 981. ADS. ADSGoogle Scholar
  19. Győri, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen Observatory. In: Choudhary, D.P., Strassmeier, K.G. (eds.) Proc. Internat. Astron. Union 6/Symp. 273, Cambridge University Press, Cambridge, 403. ADS.  DOI. Google Scholar
  20. Győri, L., Ludmány, A., Baranyi, T.: 2016, Comparative analysis of Debrecen sunspot catalogues. Mon. Not. Roy. Astron. Soc. (submitted) Google Scholar
  21. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 48, 153. ADS.  DOI. ADSCrossRefGoogle Scholar
  22. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189. ADS.  DOI. ADSCrossRefGoogle Scholar
  23. Howard, R., Gilman, P.A., Gilman, P.I.: 1984, Rotation of the Sun measured from Mount Wilson white-light images. Astrophys. J. 283, 373. ADS.  DOI. ADSCrossRefGoogle Scholar
  24. Kitchatinov, L.L., Khlystova, A.I.: 2014, North-South asymmetry of solar dynamo in the current activity cycle. Astron. Lett. 40, 663. ADS.  DOI. ADSCrossRefGoogle Scholar
  25. Korsós, M.B., Baranyi, T., Ludmány, A.: 2014, Pre-flare dynamics of sunspot groups. Astrophys. J. 789, 107. ADS.  DOI. ADSCrossRefGoogle Scholar
  26. Li, J., Ulrich, R.K.: 2012, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758, 115. ADS.  DOI. ADSCrossRefGoogle Scholar
  27. McClintock, B.H., Norton, A.A.: 2014, Re-examining sunspot tilt angle to include anti-Hale statistics. Astrophys. J. 797, 130. ADS.  DOI. ADSCrossRefGoogle Scholar
  28. McClintock, B.H., Norton, A.A.: 2016, Tilt angle and footpoint separation of small and large bipolar sunspot regions observed with HMI. Astrophys. J. 818, 7. ADS.  DOI. ADSCrossRefGoogle Scholar
  29. McCrea, W.H.: 1975, Royal Greenwich Observatory: An Historical Review issued on the occasion of its Tercentenary. H.M. Stationery Off., London. ADS.
  30. Moon, K.R., Delouille, V., Li, J.J., De Visscher, R., Watson, F., Hero, A.O.: 2016, Image patch analysis of sunspots and active regions II. Clustering via matrix factorization. J. Space Weather Space Clim. 6, A3. ADS.  DOI. ADSCrossRefGoogle Scholar
  31. Mordvinov, A.V., Pevtsov, A.A., Bertello, L., Petrie, G.J.D.: 2016, Solar-Terr. Phys. 2, 3. ADS.  DOI. Google Scholar
  32. Muraközy, J., Ludmány, A.: 2012, Phase lags of solar hemispheric cycles. Mon. Not. Roy. Astron. Soc. 419, 3624. ADS.  DOI. ADSCrossRefGoogle Scholar
  33. Muraközy, J., Baranyi, T., Ludmány, A.: 2014, Sunspot group development in high temporal resolution. Solar Phys. 289, 563. ADS.  DOI. ADSCrossRefGoogle Scholar
  34. Muraközy, J., Baranyi, T., Ludmány, A.: 2016, An alternative measure of solar activity from detailed sunspot datasets. Solar Phys.  DOI. Google Scholar
  35. Rothermel, H.: 1993, Images of the Sun: Warren De la Rue, George Biddell Airy and celestial photography. Br. J. Hist. Sci. 26, 137. CrossRefGoogle Scholar
  36. Royal Greenwich Observatory: 1874 – 1976, Greenwich Photoheliographic Results 1874 – 1976, 91. Google Scholar
  37. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129. ADS.  DOI. ADSCrossRefGoogle Scholar
  38. Scott, R.H.: 1885, The history of the Kew Observatory. Proc. Roy. Soc. London 39, 37. ADS. CrossRefGoogle Scholar
  39. Senthamizh Pavai, V., Arlt, R., Dasi-Espuig, M., Krivova, N.A., Solanki, S.K.: 2015, Sunspot areas and tilt angles for solar cycles 7 – 10. Astron. Astrophys. 584, A73. ADS.  DOI. ADSCrossRefGoogle Scholar
  40. Sokoloff, D., Khlystova, A., Abramenko, V.: 2015, Solar small-scale dynamo and polarity of sunspot groups. Mon. Not. Roy. Astron. Soc. 451, 1522. ADS.  DOI. ADSCrossRefGoogle Scholar
  41. Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during Solar Cycle 24. Astrophys. J. 798, 114. ADS.  DOI. ADSCrossRefGoogle Scholar
  42. Tóth, L., Mező, G., Gerlei, O.: 2002, Haynald Observatory photosphere observations 1880 – 1919. J. Hist. Astron. 33, 278. ADS.  DOI. ADSCrossRefGoogle Scholar
  43. Vargha, M., Kolláth, Z.: 1999, The first century of Konkoly Observatory. Astron. Geophys. 40, 17. ADS.  DOI. ADSCrossRefGoogle Scholar
  44. Wang, Y.-M., Colaninno, R.C., Baranyi, T., Li, J.: 2015, Active-region tilt angles: magnetic versus white-light determinations of Joy’s law. Astrophys. J. 798, 50. ADS.  DOI. ADSCrossRefGoogle Scholar
  45. Williams, M.E.W.: 1987, Astronomy in London: 1860 – 1900. Quart. J. Roy. Astron. 28, 10. ADS. ADSGoogle Scholar
  46. Willis, D.M., Coffey, H.E., Henwood, R., Erwin, E.H., Hoyt, D.V., Wild, M.N., Denig, W.F.: 2013a, The Greenwich photo-heliographic results (1874 – 1976): summary of the observations, applications, datasets, definitions and errors. Solar Phys. 288, 117. ADS.  DOI. ADSCrossRefGoogle Scholar
  47. Willis, D.M., Henwood, R., Wild, M.N., Coffey, H.E., Denig, W.F., Erwin, E.H., Hoyt, D.V.: 2013b, The Greenwich photo-heliographic results (1874 – 1976): procedures for checking and correcting the sunspot digital datasets. Solar Phys. 288, 141. ADS.  DOI. ADSCrossRefGoogle Scholar
  48. Willis, D.M., Wild, M.N., Appleby, G.M., Macdonald, G.M.: 2016, The Greenwich Photo-heliographic Results (1874 – 1885): Observing Telescopes, Photographic Processes, and Solar Images. Solar Phys.  DOI.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Heliophysical Observatory, Konkoly Observatory, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesDebrecenHungary

Personalised recommendations