Solar Physics

, Volume 291, Issue 9–10, pp 2869–2890 | Cite as

How Deep Was the Maunder Minimum?

  • N. V. Zolotova
  • D. I. Ponyavin
Sunspot Number Recalibration


One of the most enigmatic features of the solar history is the Maunder minimum (MM). We analyze reports of solar observers from the group-sunspot-number database. Particular attention is given to short notes that resulted in an underestimation of the sunspot activity. These reports by Derham, Flamsteed, Hevelius, Picard, G.D. Cassini, and Fogel are found to address the absence of sunspots of great significance, which could signify a secular minimum with a majority of small short-lived spots. Up to Schwabe’s discovery of the solar cycle, sunspots were considered as an irregular phenomenon; sunspot observations were not dedicated to the task of sunspot monitoring and counting. Here, we argue that the level of the solar activity in the past is significantly underestimated.


Sunspots Sun: activity 



We use data from the Royal Greenwich Observatory, United States Air Force, National Aeronautics and Space Administration (RGO/USAF/NOAA: ), the revised version of Greenwich Photoheliographic Results (GPR) sunspot catalogue provided by the Debrecen Heliophysical Observatory (DHO: ), regular solar observations at the Kislovodsk Mountain Astronomical Station GAS GAO ( ), the database by Hoyt and Schatten (1998) provided by the National Geophysical Data Center (NOAA/NGDS: ), and the average group number provided by Svalgaard and Schatten (2016).

The reported study was funded by RFBR according to the research projects No. 15-02-06959-a and No. 16-02-00300-a.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interests.


  1. Arlt, R.: 2008, Digitization of sunspot drawings by Staudacher in 1749 1796. Solar Phys. 247, 399.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arlt, R., Leussu, R., Giese, N., Mursula, K., Usoskin, I.G.: 2013, Sunspot positions and sizes for 1825-1867 from the observations by Samuel Heinrich Schwabe. Mon. Not. Roy. Astron. Soc. 433, 3165.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bard, E., Raisbeck, G., Yiou, F., Jouzel, J.: 2000, Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, Ser. B Chem. Phys. Meteorol. 52, 985.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Baumgartner, F.J.: 1987, Sunspots or Sun’s planets – Jean Tarde and the sunspot controversy of the early 17th-century. J. Hist. Astron. 18, 44. ADS. ADSCrossRefGoogle Scholar
  5. Beer, J., Tobias, S., Weiss, N.: 1998, An active Sun throughout the Maunder minimum. Solar Phys. 181, 237.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Berggren, A.-M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S.J., Abreu, J., Vinther, B.M.: 2009, A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett. 36, L11801.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Brimblecombe, P.: 2012, The Big Smoke (Routledge Revivals): A History of Air Pollution in London Since Medieval Times, Taylor & Francis, Athens. Google Scholar
  8. Buganov, V.I., Rybakov, B.A. (eds.): 1968, Complete Collection of Russian Chronicles. Chroniclers of the Last Quarter of the XVII Century 31, Nauka, Moscow. Google Scholar
  9. Buonanno, R.: 2014, The Stars of Galileo Galilei and the Universal Knowledge of Athanasius Kircher. Astrophys. Space Science Lib. 399.  DOI. ADS. zbMATHGoogle Scholar
  10. Callebaut, D.K., Makarov, V.I., Tlatov, A.G.: 2007, Monopolar structure of the Sun in between polar reversals and in Maunder minimum. Adv. Space Res. 40, 1917.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Carrasco, V.M.S., Villalba Álvarez, J., Vaquero, J.M.: 2015, Sunspots during the Maunder minimum from Machina Coelestis by Hevelius. Solar Phys. 290, 2719.  DOI. ADSCrossRefGoogle Scholar
  12. Casas, R., Vaquero, J.M., Vazquez, M.: 2006, Solar rotation in the 17th century. Solar Phys. 234, 379.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Clerke, A.M.: 1894, A new method in astronomy. Observatory 17, 234. ADS. ADSGoogle Scholar
  14. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M.: 2015, Revision of the sunspot number(s). Space Weather 13(9), 529. 2015SW001264.  DOI. CrossRefGoogle Scholar
  16. de Toma, G., Gibson, S.E., Emery, B.A., Arge, C.N.: 2010, The minimum between cycle 23 and 24: is sunspot number the whole story? In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 217. ADS. Google Scholar
  17. Delambre, J.B.J.: 1814, Astronomie théorique et pratique 3, Courcier, Paris. Google Scholar
  18. Derham, W.: 1710, Observations upon the spots that have been upon the Sun, from the year 1703 to 1711. Proc. R. Soc. Lond., Phil. Trans. Series I 27, 270. With a Letter of Mr. Crabtrie, in the Year 1640. Upon the Same Subject. By the Reverend Mr William Derham. ADS. CrossRefGoogle Scholar
  19. Descartes, R.: 1637, Discours de la méthode pour bien conduire sa raison, & chercher la verité dans les sciences. Plus La dioptrique, les météores et la géométrie, qui sont des essais de cete méthode, Chez Henry Le Gras, Paris. Google Scholar
  20. Diercke, A., Arlt, R., Denker, C.: 2015, Digitization of sunspot drawings by Spörer made in 1861 – 1894. Astron. Nachr. 336, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Dobrzycki, J.: 1999, Saturn, Aristotelian astronomy, and Cracow astronomers: an episode from the early years of telescopic astronomy. Hist. Astron. 30, 121. ADS. ADSMathSciNetCrossRefGoogle Scholar
  22. Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Ettmüller, M.E.: 1693, De maculis in sole visis disseret praeses M. Augustinus Vagetius… & respondens Michael Ernestus Ettmüllerus… 4. Non. Aug. 1693, Typis H. Mülleri, Gissae-Hassorum. Google Scholar
  24. Evelyn, J.: 1661, Fumifugium: Or the Inconvenience of the Aer and Smoak of London Dissipated, W. Godbid, London. Google Scholar
  25. Feynman, J., Ruzmaikin, A.: 2011, The Sun’s strange behavior: Maunder minimum or Gleissberg cycle? Solar Phys. 272, 351.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Forbes, E.G., Murdin, L., Wilmoth, F. (eds.): 1997, The Correspondence of John Flamsteed, the First Astronomer Royal 2, Taylor & Francis, Bristol. ISBN 9780750303910. Google Scholar
  27. Frick, P., Galyagin, D., Hoyt, D.V., Nesme-Ribes, E., Schatten, K.H., Sokoloff, D., Zakharov, V.: 1997, Wavelet analysis of solar activity recorded by sunspot groups. Astron. Astrophys. 328, 670. ADS. ADSGoogle Scholar
  28. Fröhlich, C.: 2013, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Galilei, G.: 1610, Sidereus nuncius…, Manuscripta; History of science, 16th to 19th century, Prostat francos, in Paltheniano. Google Scholar
  30. Galilei, G.: 1613, Istoria e dimostrazioni intorno alle macchie solari e loro accidenti comprese in 3 lettere. – Roma, Giacomo Mascardi 1613, Giacomo Mascardi, Roma. Google Scholar
  31. Gleissberg, W.: 1977, Considerations concerning the Maunder minimum of solar activity. Sterne Weltraum 16, 229. ADS. ADSGoogle Scholar
  32. Gleissberg, W., Damboldt, T., Schove, D.J.: 1979, Reflections of the Maunder minimum of sunspots. J. Br. Astron. Assoc. 89, 440. ADS. ADSGoogle Scholar
  33. Gómez, J.M., Vaquero, J.M.: 2015, The sunspot observations by Rheita in 1642. Observatory 135, 220. ADS. ADSGoogle Scholar
  34. Grego, P., Mannion, D.: 2010, Galileo and 400 Years of Telescopic Astronomy, Springer, New York.  DOI. ADS. CrossRefGoogle Scholar
  35. Győri, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen observatory. In: Prasad Choudhary, D., Strassmeier, K.G. (eds.) IAU Symp. 273, Cambridge University Press, Cambridge, 403.  DOI. ADS. Google Scholar
  36. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Hevelius, J.: 1647, Selenographia…, typis Hünefeldianis, Gedani. Google Scholar
  38. Hevelius, J.: 1668, Cometographia: totam naturam cometarum; … exhibens… Cumprimis verò, cometæ anno 1652, 1661, 1664 & 1665 ab ipso auctore… observati, aliquantò prolixiùs…, Auctoris typis, & sumptibus imprimebat Simon Reiniger, Gedani. Google Scholar
  39. Hevelius, J.: 1679, Machina coelestis: Rerum Uranicarum Observationes, Tam Eclipsium Luminarium, quam Occultationum Planetarum, & Fixarum, Nec non Altitudinum Meridianarum Solarium, Solstitiorum, & Aequinoctiorum; Una cum Reliquorum Planetarum, Fixarumq[ue] omnium hactenus cognitarum, Globisq[ue] adscriptarum, aeque ac plurimarum hucusq[ue] ignotarum Observatis, Auctoris typis, & sumptibus imprimebat Simon Reiniger, Gedani. Google Scholar
  40. Hockey, T.A.: 1998, Galileo’s Planet: Observing Jupiter Before Photography, IOP Publishing, London. Google Scholar
  41. Hockey, T., Trimble, V., Williams, T.R., Bracher, K., Jarrell, R.A., Marché, J.D., Ragep, F.J., Palmeri, J., Bolt, M.: 2007, The Biographical Encyclopedia of Astronomers.  DOI. ADS. CrossRefzbMATHGoogle Scholar
  42. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Johnson, M.J.: 1858, An address delivered at the annual general meeting of the society, February 13, 1857, on presenting the gold medal to M. Schwabe. Mem. R. Astron. Soc. 26, 196. ADS. ADSGoogle Scholar
  44. Keppleri, J.: 1609, Phaenomenon singulare, seu Mercurius in sole. Cum digressione de causis, cur Dionysius Abbas Christianos minus iusto à Nativitate Christi Domini numerare docuerit: de capite & anni ecclesiastici, Impensis T. Schureri, Lipsia. Google Scholar
  45. King, H.C.: 1955, The History of the Telescope, Dover, New York. Google Scholar
  46. Kircher, A.: 1660, Iter extaticum coe leste… interlocutoribus Cosmiele et Theodidacto…, Herbipolis. Google Scholar
  47. Kircher, A.: 1678, Athanasii Kircheri, …Mundus subterraneus, in XII libros digestus…, Athanasii Kircheri, …Mundus subterraneus, in XII libros digestus, apud J. Janssonium a Waesberge et filios, Amstelodami. Google Scholar
  48. Kocharov, G.E., Ostryakov, V.M., Peristykh, A.N., Vasil’ev, V.A.: 1995, Radiocarbon content variations and Maunder minimum of solar activity. Solar Phys. 159, 381.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Kopecky, M., Kuklin, G.V.: 1987, One possible explanation of Maunder’s minimum of sunspots. Bull. Astron. Inst. Czechoslov. 38, 193. ADS. ADSGoogle Scholar
  50. Kovaltsov, G.A., Usoskin, I.G., Mursula, K.: 2004, An upper limit on sunspot activity during the Maunder minimum. Solar Phys. 224, 95.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Kuleshova, A.I., Dergachev, V.A., Kudryavtsev, I.V., Nagovitsyn, Y.A., Ogurtsov, M.G.: 2015, Possible influence of climate factors on the reconstruction of the cosmogenic isotope 14C production rate in the Earth’s atmosphere and solar activity in past epochs. Geomagn. Aeron. 55, 1071.  DOI. ADSCrossRefGoogle Scholar
  52. Landsberg, H.E.: 1980, Variable solar emissions, the “Maunder minimum” and climatic temperature fluctuations. Arch. Meteorol., Geophys. Bioklimatol., Ser. B Theor. Appl. Climatol. 28, 181.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Lee, C.O., Luhmann, J.G., Zhao, X.P., Liu, Y., Riley, P., Arge, C.N., Russell, C.T., de Pater, I.: 2009, Effects of the weak polar fields of solar cycle 23: investigation using OMNI for the STEREO mission period. Solar Phys. 256, 345.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Legrand, J.-P., Le Goff, M., Mazaudier, C.: 1990, On the climatic changes and the sunspot activity during the XVIIth century. Ann. Geophys. 8, 637. Google Scholar
  55. Livingston, W., Penn, M.: 2009, Are sunspots different during this solar minimum? EOS Trans. 90, 257.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Lockwood, M., Harrison, R.G., Woollings, T., Solanki, S.K.: 2010, Are cold winters in Europe associated with low solar activity? Environ. Res. Lett. 5(2), 024001.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Loysha, V.A., Krakovetsky, Y.K., Popov, L.N.: 1989, Aurorae, the Catalogue from IV to XVIII Centuries, VINITI, Moscow. Google Scholar
  58. Malapert, C.: 1633, Austriaca sidera heliocyclia, astronomicis hypothesibus illigata, ex officina Baltazaris Belleri, Duaci. Google Scholar
  59. Maunder, E.W.: 1922, The Sun and Sun-spots, 1820 – 1920. Mon. Not. Roy. Astron. Soc. 82, 534. ADS. ADSCrossRefGoogle Scholar
  60. McComas, D.J., Angold, N., Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., Smith, C.W.: 2013, Weakest solar wind of the space age and the current “Mini” Solar Maximum. Astrophys. J. 779, 2.  DOI. ADS. ADSCrossRefGoogle Scholar
  61. McCracken, K.G., Beer, J.: 2014, Comparison of the extended solar minimum of 2006 – 2009 with the Spoerer, Maunder, and Dalton Grand minima in solar activity in the past. J. Geophys. Res. 119, 2379.  DOI. ADS. CrossRefGoogle Scholar
  62. McCracken, K.G., Beer, J.: 2015, The annual cosmic-radiation intensities 1391 – 2014; the annual heliospheric magnetic field strengths 1391 – 1983, and identification of solar cosmic-ray events in the cosmogenic record 1800 – 1983. Solar Phys. 290, 3051.  DOI. ADS. ADSCrossRefGoogle Scholar
  63. McCracken, K.G., Dreschhoff, G.A.M., Smart, D.F., Shea, M.A.: 2001, Solar cosmic ray events for the period 1561 – 1994: 2. The Gleissberg periodicity. J. Geophys. Res. 106, 21599.  DOI. ADS. ADSCrossRefGoogle Scholar
  64. Mitchell, W.M.: 1916, The history of the discovery of the solar spots. Pop. Astron. 24, 82. ADSGoogle Scholar
  65. Miyahara, H., Masuda, K., Menjo, H., Kuwana, K., Muraki, Y., Nakamura, T.: 2005, Variation of solar activity during the Grand solar minima deduced from radiocarbon content in tree rings. In: Acharya, B.S., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) 29th Internat. Cosmic Ray Conf. 2, Tata Institute of Fundamental Research, Mumbai, 199. ADS. Google Scholar
  66. Muscheler, R., Joos, F., Beer, J., Müller, S.A., Vonmoos, M., Snowball, I.: 2007, Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26, 82.  DOI. ADS. ADSCrossRefGoogle Scholar
  67. Nagovitsyn, Y.A.: 2007, Solar cycles during the Maunder minimum. Astron. Lett. 33, 340.  DOI. ADS. ADSCrossRefGoogle Scholar
  68. Nagovitsyn, Y.A., Pevtsov, A.A., Livingston, W.C.: 2012, On a possible explanation of the long-term decrease in sunspot field strength. Astrophys. J. Lett. 758, L20.  DOI. ADS. ADSCrossRefGoogle Scholar
  69. Oldenburg, H.: 1671, New observations of spots in the Sun. Phil. Trans. Roy. Soc. Series I 6, 2250. Made at the royal academy of Paris, the 11, 12 and 13th of August 1671; and English’t out of the French, as follows. ADS. Google Scholar
  70. Parker, E.N.: 1976, The enigma of solar activity. In: Bumba, V., Kleczek, J. (eds.) Basic Mechanisms of Solar Activity, IAU Symp. 71, Reidel, Dordrecht, 3. ADS. CrossRefGoogle Scholar
  71. Picolet, G.: 1978, La correspondance de Jean Picard avec Johann Hevelius (1671 – 1679). Rev. Hist. Sci. 31(1), 3. CrossRefGoogle Scholar
  72. Poluianov, S.V., Usoskin, I.G., Kovaltsov, G.A.: 2014, Cosmogenic isotope variability during the Maunder minimum: normal 11-year cycles are expected. Solar Phys. 289, 4701.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Réthly, A., Berkes, Z.: 1963, Nordlichtbeobachtungen in Ungarn, 1523 – 1960, Verlag der Ungarischen Akademie der Wissenschaften, Budapest. Google Scholar
  74. Ribes, J.C., Nesme-Ribes, E.: 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549. ADS. ADSGoogle Scholar
  75. Scheiner, C.: 1630, Rosa Ursina, Braccianum, Augustae Vindelicorum. Google Scholar
  76. Scheiner, C.: 1612a, Tres epistolae de maculis solaribus scriptae ad Marcum Velserum. Cum observationum iconismis, Ad insigne pinus, Augustae Vindelicorum. Google Scholar
  77. Scheiner, C.: 1612b, De maculis solaribus et stellis circa Jovem errantibus accuratior disquisitio, ad Mar. Velseum priscrita. Interjectis observationum delineationibus, Ad insigne pinus, Augustae Vindelicorum. Google Scholar
  78. Scheiner, C.: 1651, Prodromus pro Sole mobili, et Terra stabili contra academicum florentinum Galilaeum a Galilaeis, qui nunc primum in publicam lucem prodit. – (Pragae, Gosvinus Nickel) 1651, Gosvinus Nickel, Silesia. Google Scholar
  79. Schove, D.J.: 1979, Sunspot turning-points and aurorae A. D. 1510. Solar Phys. 63, 423.  DOI. ADS. ADSCrossRefGoogle Scholar
  80. Schröder, W.: 1979, Auroral frequency in the 17th and 18th centuries and the “Maunder minimum”. J. Atmos. Solar-Terr. Phys. 41, 445. ADS. ADSCrossRefGoogle Scholar
  81. Schröder, W.: 1992, On the existence of the 11-year cycle in solar and auroral activity before and during the so-called Maunder minimum. J. Geomagn. Geoelectr. 44, 119.  DOI. CrossRefGoogle Scholar
  82. Schröder, W.: 2005, Case Studies on the Spörer, Maunder and Dalton Minima, AKGGP, Science Edition, Potsdam. Google Scholar
  83. Silverman, S.: 1993, Is the Maunder minimum real? Eos Trans. 74, 450.  DOI. ADS. ADSCrossRefGoogle Scholar
  84. Smogulecki, N., Schönberger, J.G., Meyer, T.: 1627, Sol illustratus ac propugnatus ab illustri ac generoso domino, Excudebat Theodorus Meyer, Brisgoia. Google Scholar
  85. Soon, W.W.-H., Yaskell, S.H.: 2003, The Maunder Minimum: The Variable Sun–Earth Connection, World Scientific, Singapore. ADS. CrossRefGoogle Scholar
  86. Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 798, 114.  DOI. ADS. ADSCrossRefGoogle Scholar
  87. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, 1104.  DOI. ADS. ADSCrossRefGoogle Scholar
  88. Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the Sunspot Group Number: the Backbone Method. Solar Phys.  DOI. ADS. Google Scholar
  89. Tarde, J.: 1620, Borbonia sidera id est planetae qui solis limina circumuolitant motu proprio ac regulari, falso hactenus ab helioscopis maculae solis nuncupati, apud Ioannem Gesselin, via Iacobaea, sub signo Aquilae Aureae, Parisiis. Google Scholar
  90. Thorsheim, P.: 2006, Inventing Pollution: Coal, Smoke, and Culture in Britain Since 1800, Ohio University Press, New York. CrossRefGoogle Scholar
  91. Tlatov, A.G., Vasil’eva, V.V., Makarova, V.V., Otkidychev, P.A.: 2014, Applying an automatic image-processing method to synoptic observations. Solar Phys. 289, 1403.  DOI. ADS. ADSCrossRefGoogle Scholar
  92. Usoskin, I.G., Solanki, S.K., Schüssler, M., Mursula, K., Alanko, K.: 2003, Millennium-scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91(21), 211101.  DOI. ADS. ADSCrossRefGoogle Scholar
  93. Usoskin, I.G., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thébault, E., Khokhlov, A.: 2014, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10.  DOI. ADS. ADSCrossRefGoogle Scholar
  94. Usoskin, I.G., Arlt, R., Asvestari, E., Hawkins, E., Käpylä, M., Kovaltsov, G.A., Krivova, N., Lockwood, M., Mursula, K., O’Reilly, J., Owens, M., Scott, C.J., Sokoloff, D.D., Solanki, S.K., Soon, W., Vaquero, J.M.: 2015, The Maunder minimum (1645 – 1715) was indeed a Grand minimum: a reassessment of multiple datasets. Astron. Astrophys. 581, A95.  DOI. ADS. ADSCrossRefGoogle Scholar
  95. Vaquero, J.M., Nogales, J.M., Sánchez-Bajo, F.: 2015, Sunspot latitudes during the Maunder minimum: a machine-readable catalogue from previous studies. Adv. Space Res. 55, 1546.  DOI. ADS. ADSCrossRefGoogle Scholar
  96. Vaquero, J.M., Trigo, R.M.: 2014, Revised group sunspot number values for 1640, 1652, and 1741. Solar Phys. 289, 803.  DOI. ADS. ADSCrossRefGoogle Scholar
  97. Vaquero, J.M., Trigo, R.M.: 2015, Redefining the limit dates for the Maunder minimum. New Astron. 34, 120.  DOI. ADS. ADSCrossRefGoogle Scholar
  98. Vaquero, J.M., Vázquez, M.: 2009, The Sun Recorded Through History, Astrophys. Space Sci. Lib., Springer, New York. ISBN 9780387927909. Google Scholar
  99. Vaquero, J.M., Gallego, M.C., Usoskin, I.G., Kovaltsov, G.A.: 2011, Revisited sunspot data: a new scenario for the onset of the Maunder minimum. Astrophys. J. Lett. 731, L24.  DOI. ADS. ADSCrossRefGoogle Scholar
  100. Vaquero, J.M., Kovaltsov, G.A., Usoskin, I.G., Carrasco, V.M.S., Gallego, M.C.: 2015, Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics. Astron. Astrophys. 577, A71.  DOI. ADS. ADSCrossRefGoogle Scholar
  101. Vitinskij, Y.I., Kopetskij, M., Kuklin, G.V.: 1986, Statistics of the Spot-Forming Activity of the Sun, Nauka, Moscow. ADS. zbMATHGoogle Scholar
  102. von Guericke, O., Schott, K.: 1672, Ottonis De Guericke Experimenta Nova (ut vocantur) Magdeburgica De Vacuo Spatio, Janssonius a Waesberge, Amtelodami. Google Scholar
  103. Weiss, J.E., Weiss, N.O.: 1979, Andrew Marvell and the Maunder minimum. Q. J. Roy. Astron. Soc. 20, 115. ADS. ADSGoogle Scholar
  104. Woeckel, L.: 1846, Die Sonne und ihre Flecken, Verlag von Fridrich Campe, Nürnberg.  DOI. ADS. Google Scholar
  105. Wolf, R.: 1856 – 1959, Astronomische Mittheilungen über die Sonnenflecken I bis X, Sternwarte zu Göttingen, Zürich. Google Scholar
  106. Wolf, R.: 1861, Mittheilungen über die Sonnenflecken XII. Astron. Mitt. Eidgenöss. Sternwarte Zür. 2, 41. ADS. ADSGoogle Scholar
  107. Wolf, C.: 1902, Histoire de l’Observatoire de Paris de sa fondation à 1793, Gauthier-Villars, Paris. Google Scholar
  108. Zolotova, N.V., Ponyavin, D.I.: 2014, Is the new Grand minimum in progress? J. Geophys. Res. 119, 3281.  DOI. ADS. CrossRefGoogle Scholar
  109. Zolotova, N.V., Ponyavin, D.I.: 2015, The Maunder minimum is not as Grand as it seemed to be. Astrophys. J. 800, 42.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations