Advertisement

Solar Physics

, Volume 291, Issue 5, pp 1483–1531 | Cite as

Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010

  • Laure Lefèvre
  • Susanne Vennerstrøm
  • Mateja Dumbović
  • Bojan Vršnak
  • Davor Sudar
  • Rainer Arlt
  • Frédéric Clette
  • Norma Crosby
Article

Abstract

An analysis of historical Sun–Earth connection events in the context of the most extreme space weather events of the last \(\sim150\) years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major geomagnetic storms.

For this purpose, we used detailed sunspot catalogs as well as solar images and drawings from 1868 to 2010. We have systematically collected the most pertinent sunspot parameters back to 1868, gathering and digitizing solar drawings from different sources such as the Greenwich archives, and extracting the missing sunspot parameters. We present a detailed statistical analysis of the active region parameters (sunspots, flares) relative to the geomagnetic parameters developed in Paper I.

In accordance with previous studies, but focusing on a much larger statistical sample, we find that the level of the geomagnetic storm is highly correlated to the size of the active regions at the time of the flare and correlated with the size of the flare itself. We also show that the origin at the Sun is most often a complex active region that is also most of the time close to the central meridian when the event is identified at the Sun. Because we are dealing with extremely severe storms, and not the usual severe storm sample, there is also a strong correlation between the size of the linked active region, the estimated transit speed, and the level of the geomagnetic event. In addition, we confirm that the geomagnetic events studied here and the associated events at the Sun present a low probability of occurring at low sunspot number value and are associated mainly with the maximum and descending part of the solar cycle.

Keywords

Historical data Extreme events Solar storms Geomagnetic storms Flares Active regions Sunspots Statistics 

Notes

Acknowledgements

This work has been conducted in the frame of the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 263252 (COMESEP). We also acknowledge the support from the Belgian Solar–Terrestrial Center of Excellence (STCE) funded through the Belgian Science Policy Office (BELSPO). L.L. would like to thank O. Lemaître (Royal Observatory of Belgium) for measuring solar data on drawings for this work, and J.M. Vaquero (Universidad de Extremadura, Spain) for his invaluable help with the historical data. M.D., D.S. and B.V. acknowledge financial support by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. The Mt. Wilson 150-Foot Solar Tower has been operated by UCLA since 1985, with funding from NASA, ONR and NSF, under agreement with the Mt. Wilson Institute. Prior to 1985 the program was operated by the Hale Observatories with support by the Carnegie Institute of Washington.

References

  1. Akasofu, S.-I., Yoshida, S.: 1967, The structure of the solar plasma flow generated by solar flares. Planet. Space Sci. 15, 39.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arcimis, A.T.: 1901, Astronomia Popular – Tome I, Montaner y Simón Editores, Barcelona. Google Scholar
  3. Arlt, R., Fröhlich, H.-E.: 2012, The solar differential rotation in the 18th century. Astron. Astrophys. 543, A7.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Athens, O.: 1871, Beobachtungen der Sonne im Jahre 1870 auf der Sternwarte zu Athen. Astron. Nachr. 77, 145. ADS. CrossRefGoogle Scholar
  5. Aulanier, G., Démoulin, P., Schrijver, C.J., Janvier, M., Pariat, E., Schmieder, B.: 2013, The standard flare model in three dimensions, II: upper limit on solar flare energy. Astron. Astrophys. 549, A66.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Balthasar, H., Lustig, G., Woehl, H., Stark, D.: 1986, The solar rotation elements i and omega derived from sunspot groups. Astron. Astrophys. 160, 277. ADS. ADSGoogle Scholar
  7. Bouwer, S.D., Donnelly, J., Falcon, J., Quintana, A., Caldwel, G.: 1982, A summary of solar 1 – 8 A measurements from the SMS and GOES satellites, 1977 – 1981. NASA STI/Recon Technical Report N 83, 23263. ADS. ADSGoogle Scholar
  8. Cane, H.V.: 1985, The evolution of interplanetary shocks. J. Geophys. Res. 90, 191.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Cane, H.V., Kahler, S.W., Sheeley, N.R. Jr.: 1986, Interplanetary shocks preceded by solar filament eruptions. J. Geophys. Res. 91, 13321.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Cane, H.V., Richardson, I.G., St. Cyr, O.C.: 2000, Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett. 27, 3591.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Cane, H.V., Richardson, I.G., Wibberenz, G.: 1996, Energetic particles and solar wind disturbances. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Am. Inst. Phys. Conf. Ser. 382, 449.  DOI. ADS. Google Scholar
  12. Carrasco, V.M.S., Vaquero, J.M., Gallego, M.C., Trigo, R.M.: 2013, Forty two years counting spots: solar observations by D.E. Hadden during 1890 – 1931 revisited. New Astron. 25, 95.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Chatfield, C., Collins, A.J.: 1980, Introduction to Multivariate Analysis Springer, New York.  DOI. zbMATHCrossRefGoogle Scholar
  14. Cliver, E.W.: 1995, Solar flare nomenclature. Solar Phys. 157, 285.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Cliver, E.W., Crooker, N.U.: 1993, A seasonal dependence for the geoeffectiveness of eruptive solar events. Solar Phys. 145, 347.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Cliver, E.W., Feynman, J., Garrett, H.B.: 1990, An estimate of the maximum speed of the solar wind, 1938 – 1989. J. Geophys. Res. 95, 17103.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Cliver, E.W., Balasubramaniam, K.S., Nitta, N.V., Li, X.: 2009, Great geomagnetic storm of 9 November 1991: association with a disappearing solar filament. J. Geophys. Res. 114, A00.  DOI. ADS. CrossRefGoogle Scholar
  18. Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, 6001.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Crooker, N.U., Siscoe, G.L., Shodhan, S., Webb, D.F., Gosling, J.T., Smith, E.J.: 1993, Multiple heliospheric current sheets and coronal streamer belt dynamics. J. Geophys. Res. 98, 9371.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Crosby, N., Heynderickx, D., Jiggens, P., Aran, A., Sanahuja, B., Truscott, P., Lei, F., Jacobs, C., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2015, SEPEM: a tool for statistical modeling the solar energetic particle environment. Space Weather 13, 406.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Denning, W.F.: 1873, Observations of solar spots – October 14th to November 15th, 1872. Astron. Reg. 11, 73. Google Scholar
  22. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290, 841.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Dodson, H.W., Hedeman, E.R.: 1964, Problems of differentiation of flares with respect to geophysical effects. Planet. Space Sci. 12, 393.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Dodson, H.W., Hedeman, E.R., Mohler, O.C.: 1979, Examples of problem flares or situations in past solar–terrestrial observations. In: Donnelly, R.F. (ed.) NOAA Solar–Terrestrial Predictions Proc., Solar–Terrestrial Physics 1, 385. ADS. Google Scholar
  25. Drake, S.A., Gurman, J.B.: 1989, The SMM UV observations of active region 5395. In: Winglee, R.M., Dennis, B.R. (eds.) Developments in Observations and Theory for Solar Cycle 22, 248. ADS. Google Scholar
  26. Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.: 2015, Geoeffectiveness of coronal mass ejections in the SOHO era. Solar Phys. 290, 579.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Erwin, E.H., Coffey, H.E., Denig, W.F., Willis, D.M., Henwood, R., Wild, M.N.: 2013, The Greenwich photo-heliographic results (1874 – 1976): initial corrections to the printed publications. Solar Phys. 288, 157.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Feynman, J.: 1980, Implications of solar cycles 19 and 20 geomagnetic activity for magnetospheric processes. Geophys. Res. Lett. 7, 971.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Fritzová-Švestková, L., Švestka, Z.: 1966, Type IV bursts, II: in association with PCA events. Bull. Astron. Inst. Czechoslov. 17, 249. ADS. ADSGoogle Scholar
  31. Garcia, H.A., Dryer, M.: 1987, The solar flares of February 1986 and the ensuing intense geomagnetic storm. Solar Phys. 109, 119.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Gonzalez, W.D., Tsurutani, B.T., McIntosh, P.S., Clúa de Gonzalez, A.L.: 1996, Coronal hole-active region-current sheet (CHARCS) association with intense interplanetary and geomagnetic activity. Geophys. Res. Lett. 23, 2577.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Gosling, J.T.: 1993, Coronal mass ejections – the link between solar and geomagnetic activity. Phys. Fluids, B Plasma Phys. 5, 2638.  DOI. ADS. CrossRefGoogle Scholar
  35. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Győri, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. ADS. ADSCrossRefGoogle Scholar
  37. Győri, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen Observatory. In: IAU Symposium, 273, 403.  DOI. ADS. Google Scholar
  38. Győri, L., Baranyi, T., Muraközy, J., Ludmány, A.: 2005, Recent advances in the Debrecen sunspot catalogues. Mem. Soc. Astron. Ital. 76, 981. ADS. ADSGoogle Scholar
  39. Hale, G.E.: 1929, No. 388. The spectroscope and its work. Part I. History, instruments, adjustments, and methods of observation. Contributions from the Mount Wilson Observatory/Carnegie Institution of Washington 388, 1. ADS. ADSGoogle Scholar
  40. Hale, G.E.: 1931, The spectrohelioscope and its work. Part III. Solar eruptions and their apparent terrestrial effects. Astrophys. J. 73, 379.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Howard, R.F.: 1992, The growth and decay of sunspot groups. Solar Phys. 137, 51.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Howard, R.F.: 1993, How growth and decay of sunspot groups depend on axial tilt angles. Solar Phys. 145, 95.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Howard, R.A.: 2006, A historical perspective on coronal mass ejections. In: Gopalwamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles. AGU, Geophys. Mon. Ser. 165, 7. ADS. CrossRefGoogle Scholar
  44. Howard, T.A., Tappin, S.J.: 2005, Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences. Astron. Astrophys. 440, 373.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 181, 491. ADS. ADSCrossRefGoogle Scholar
  46. Hudson, H.S.: 1991, Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Joselyn, J.A., McIntosh, P.S.: 1981, Disappearing solar filaments – a useful predictor of geomagnetic activity. J. Geophys. Res. 86, 4555.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Kahler, S.W.: 1982, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Krivský, L.: 1973, Trends of development of the proton active region of 24 January 1971. Bull. Astron. Inst. Czechoslov. 24, 96. ADS. ADSGoogle Scholar
  51. Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Lefèvre, L., Clette, F.: 2014, Survey and merging of sunspot catalogs. Solar Phys. 289, 545.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Lundstedt, H., Persson, T., Andersson, V.: 2015, The extreme solar storm of May 1921: observations and a complex topological model. Ann. Geophys. 33, 109.  DOI. ADSCrossRefGoogle Scholar
  54. Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections, II: synchronization of the energy release in the associated flare. Solar Phys. 241, 99.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Maunder, E.W.: 1904, Greenwich, Royal Observatory, the “great” magnetic storms, 1875 to 1903, and their association with sun-spots. Mon. Not. Roy. Astron. Soc. 64, 205. ADS. ADSCrossRefGoogle Scholar
  56. Mayaud, P.N.: 1980, Derivation, meaning and use of geomagnetic indices. AGU 22, 538.  DOI. Google Scholar
  57. McAllister, A.H., Dryer, M., McIntosh, P., Singer, H., Weiss, L.: 1996, A large polar crown coronal mass ejection and a “problem” geomagnetic storm: April 14 – 23, 1994. J. Geophys. Res. 101, 13497.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251.  DOI. ADS. ADSCrossRefGoogle Scholar
  59. Menvielle, M., Marchaudon, A.: 2007, Geomagnetic indices in solar–terrestrial physics and space weather. In: Lilensten, J. (ed.) Space Weather: Research Towards Applications in Europe 2nd European Space Weather Week (ESWW2), Astrophys. Space Sci. Library 344, 277.  DOI. ADS. CrossRefGoogle Scholar
  60. Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, Relationship between CME kinematics and flare strength. J. Korean Astron. Soc. 36, 61. ADS. ADSCrossRefGoogle Scholar
  61. Neidig, D.F., Cliver, E.W.: 1983, A catalog of solar white-light flares, including their statistical properties and associated emissions, 1859 – 1982. NASA STI/Recon Technical Report N 84, 24521. ADS. ADSGoogle Scholar
  62. Newton, H.W.: 1943, Solar flares and magnetic storms. Mon. Not. Roy. Astron. Soc. 103, 244. ADS. ADSCrossRefGoogle Scholar
  63. Newton, H.W.: 1944, Solar flares and magnetic storms (second paper). Mon. Not. Roy. Astron. Soc. 104, 4. ADS. ADSCrossRefGoogle Scholar
  64. Newton, H.W.: 1950, A significant time-distribution of great solar flares and great geomagnetic storms. Observatory 70, 233. ADS. ADSGoogle Scholar
  65. Pearson, K.: 1895, Notes on regression and inheritance in the case of two parents. Proc. Roy. Soc. London 58, 500.  DOI. ADS. Google Scholar
  66. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313.  DOI. ADS. ADSCrossRefGoogle Scholar
  67. Proctor, R.A.: 1871, The Sun: Ruler, Fire, Light, and Life of the Planetary System, Longman & Green, London. Google Scholar
  68. Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241, 195.  DOI. ADS. ADSCrossRefGoogle Scholar
  69. Qahwaji, R., Colak, T., Al-Omari, M., Ipson, S.: 2008, Automated prediction of CMEs using machine learning of CME – flare associations. Solar Phys. 248, 471.  DOI. ADS. ADSCrossRefGoogle Scholar
  70. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413.  DOI. ADS. ADSCrossRefGoogle Scholar
  71. Richardson, R.S.: 1944, Solar flares versus bright chromospheric eruptions: a question of terminology. Publ. Astron. Soc. Pac. 56, 156.  DOI. ADS. ADSCrossRefGoogle Scholar
  72. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Ruždjak, V., Vršnak, B., Brajša, R., Schroll, A.: 1989, A comparison of H-alpha and soft X-ray characteristics of spotless and SPOT group flares. Solar Phys. 123, 309.  DOI. ADS. ADSCrossRefGoogle Scholar
  74. Sakurai, K.: 1970, On the magnetic configuration of sunspot groups which produce solar proton flares. Planet. Space Sci. 18, 33.  DOI. ADS. ADSCrossRefGoogle Scholar
  75. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583.  DOI. ADS. ADSCrossRefGoogle Scholar
  76. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129.  DOI. ADS. ADSCrossRefGoogle Scholar
  77. Schrijver, C.J., Beer, J., Baltensperger, U., Cliver, E.W., Güdel, M., Hudson, H.S., McCracken, K.G., Osten, R.A., Peter, T., Soderblom, D.R., Usoskin, I.G., Wolff, E.W.: 2012, Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. 117, 8103.  DOI. ADS. CrossRefGoogle Scholar
  78. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033.  DOI. ADS. ADSCrossRefGoogle Scholar
  79. Secchi, P.: 1872, Sur les taches et le diametre solaires. C. R. Acad. Sci., Paris 75, 1581. Google Scholar
  80. Secchi, P.: 1879, El Sol, Madrid Administracion de la Biblioteca Cientifico-Literaria, Libreria de Victoriano Suarez, Sevilla. Google Scholar
  81. Silverman, S.M., Cliver, E.W.: 2001, Low-latitude auroras: the magnetic storm of 14 – 15 May 1921. J. Atmos. Solar-Terr. Phys. 63, 523.  DOI. ADS. ADSCrossRefGoogle Scholar
  82. Simnett, G.M., Harrison, R.A.: 1985, The onset of coronal mass ejections. Solar Phys. 99, 291.  DOI. ADS. ADSCrossRefGoogle Scholar
  83. Spearman, C.: 1904, The proof and measurement of association between two things. Am. J. Psychol. 15(15), 500.  DOI. ADS. Google Scholar
  84. Spoerer, G.: 1876, Beobachtungen der Sonnenflecken – Part II, Der Astronomisches Gesellschaft, Leipzig. Google Scholar
  85. Srivastava, N., Venkatakrishnan, P.: 2002, Relationship between CME speed and geomagnetic storm intensity. Geophys. Res. Lett. 29, 1287.  DOI. ADS. ADSGoogle Scholar
  86. Srivastava, N., Venkatakrishnan, P.: 2004, Solar and interplanetary sources of major geomagnetic storms during 1996-2002. J. Geophys. Res. 109(A18), 10103.  DOI. ADS. CrossRefGoogle Scholar
  87. Srivastava, N., Gonzalez, W.D., Gonzalez, A.L.C., Masuda, S.: 1997, On the characteristics of solar origins of geoeffective CMEs observed during August 1992 – April 1993. In: Wilson, A. (ed.) Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ESA SP 415, 443. ADS. Google Scholar
  88. Srivastava, N., Gonzalez, W.D., Gonzalez, A.L.C., Masuda, S.: 1998, On the solar origins of intense geomagnetic storms observed during 6 – 11 March 1993. Solar Phys. 183, 419.  DOI. ADS. ADSCrossRefGoogle Scholar
  89. Švestka, Z.: 1966, Proton flares before 1956. Bull. Astron. Inst. Czechoslov. 17, 262. ADS. ADSGoogle Scholar
  90. Švestka, Z.: 1969, The optical flare. In: de Jager, C., Svestka, Z. (eds.) Solar Flares and Space Research, North-Holland, Amsterdam, 16. ADS. Google Scholar
  91. Ternullo, M., Contarino, L., Romano, P., Zuccarello, F.: 2002, A statistical analysis on sunspot-groups correlated to M and X flares. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP 506, 1045. ADS. Google Scholar
  92. Tousey, R., Bartoe, J.D.F., Bohlin, J.D., Brueckner, G.E., Purcell, J.D., Scherrer, V.E., Sheeley, N.R. Jr., Schumacher, R.J., Vanhoosier, M.E.: 1973, A Preliminary study of the extreme ultraviolet spectroheliograms from skylab. Solar Phys. 33, 265.  DOI. ADS. ADSGoogle Scholar
  93. Vaquero, J.M., Valente, M.A., Trigo, R.M., Ribeiro, P., Gallego, M.C.: 2008, The 1870 space weather event: geomagnetic and auroral records. J. Geophys. Res. 113, 8230.  DOI. ADS. CrossRefGoogle Scholar
  94. Vaquero, J.M., Trigo, R.M., Gallego, M.C., Dominguez-Castro, F.: 2012, Improving sunspot records: solar drawings of the late 19th century from the Royal Astronomical Observatory of Lisbon. Observatory 132, 376. ADS. ADSGoogle Scholar
  95. Vennerstrøm, S., Lefevre, L., Dumbovic, M., Crosby, N., Malandraki, O., Patsou, I., Clette, F., Veronig, A., Vrsnak, B., Leer, K., Moretto, T.: 2016, Extreme geomagnetic storms – 1868 – 2010. Solar Phys.  DOI. Google Scholar
  96. Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: are there really two types of CMEs? Astron. Astrophys. 435, 1149.  DOI. ADS. ADSCrossRefGoogle Scholar
  97. Wagner, W.J., Hildner, E., House, L.L., Sawyer, C., Sheridan, K.V., Dulk, G.A.: 1981, Radio and visible light observations of matter ejected from the sun. Astrophys. J. Lett. 244, L123.  DOI. ADS. ADSCrossRefGoogle Scholar
  98. Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X.: 2002, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. 107, 1340.  DOI. ADS. CrossRefGoogle Scholar
  99. Willis, D.M., Coffey, H.E., Henwood, R., Erwin, E.H., Hoyt, D.V., Wild, M.N., Denig, W.F.: 2013b, The Greenwich photo-heliographic results (1874 – 1976): summary of the observations, applications, datasets, definitions and errors. Solar Phys. 288, 117.  DOI. ADS. ADSCrossRefGoogle Scholar
  100. Willis, D.M., Henwood, R., Wild, M.N., Coffey, H.E., Denig, W.F., Erwin, E.H., Hoyt, D.V.: 2013a, The Greenwich photo-heliographic results (1874 – 1976): procedures for checking and correcting the sunspot digital datasets. Solar Phys. 288, 141.  DOI. ADS. ADSCrossRefGoogle Scholar
  101. Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143.  DOI. ADS. ADSCrossRefGoogle Scholar
  102. Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452.  DOI. ADS. ADSCrossRefGoogle Scholar
  103. Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520.  DOI. ADS. ADSCrossRefGoogle Scholar
  104. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} \le -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A11), 10102.  DOI. ADS. Google Scholar
  105. Zirin, H., Liggett, M.A.: 1987, Delta spots and great flares. Solar Phys. 113, 267.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Laure Lefèvre
    • 1
  • Susanne Vennerstrøm
    • 2
  • Mateja Dumbović
    • 3
  • Bojan Vršnak
    • 3
  • Davor Sudar
    • 3
  • Rainer Arlt
    • 4
  • Frédéric Clette
    • 1
  • Norma Crosby
    • 5
  1. 1.Royal Observatory of BelgiumBrusselsBelgium
  2. 2.National Space InstituteDTU SpaceCopenhagenDenmark
  3. 3.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  4. 4.Institute for Astrophysics PotsdamAIPPotsdamGermany
  5. 5.Royal Belgian Institute for Space AeronomyBrusselsBelgium

Personalised recommendations