Abstract
The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data.
We here investigate the problem of segmentation of solar EUV images into ARs, CHs, and quiet-Sun (QS) images in a firm Bayesian way. On the basis of Bayes’ rule, we need to obtain both prior and likelihood models. To find the prior model of an image, we used a Potts model in non-local mode. To construct the likelihood model, we combined a mixture of a Markov–Gauss model and non-local means. After estimating labels and hyperparameters with the Gibbs estimator, cellular learning automata were employed to determine the label of each pixel.
We applied the proposed method to a Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) dataset recorded during 2011 and found that the mean value of the filling factor of ARs is 0.032 and 0.057 for CHs. The power-law exponents of the size distribution of ARs and CHs were obtained to be −1.597 and −1.508, respectively, with the maximum likelihood estimator method. When we compare the filling factors of our method with a manual selection approach and the SPoCA algorithm, they are highly compatible.
This is a preview of subscription content, access via your institution.












References
Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Solar Phys. 26, 354. DOI .
Aschwanden, M.J.: 2006, Physics of the Solar Corona, 2nd edn. Springer, Berlin. Praxis Publishing. DOI .
Ayasso, H., Djafari, A.: 2010, IEEE Trans. Image Process. 19, 2265. DOI .
Barra, V., Delouille, V., Hochedez, J.F.: 2008, Adv. Space Res. 42, 917. DOI .
Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.F.: 2009, Astron. Astrophys. 505, 361. DOI .
Beigy, H., Meybodi, M.R.: 2004, Adv. Complex Syst. 7, 295. DOI .
Benkhalil, A., Zharkova, V.V., Zharkov, S., Ipson, S.: 2006, Solar Phys. 235, 87. DOI .
Li, S.Z.: 2009, Markov Random Field Modeling in Image Analysis, 3rd edn., Advances in Pattern Recognition. Springer, London. DOI .
Brault, P., Djafari, A.: 2005, J. Electron. Imaging 14, 043011. DOI .
Bresson, X., Chan, T.F.: 2008, UCLA. cam. report, 08.
Clauset, A., Shalizi, C.R., Newman, M.E.J.: 2009, SIAM Rev. 51, 661. DOI .
Colak, T., Qahwaji, R.: 2013, Solar Phys. 283, 143. DOI .
Deng, H., Clausi, D.A.: 2004, Pattern Recognit. 37, 2323. DOI .
Dong, W., Zhang, D., Shi, G., Wu, X.: 2011, IEEE Trans. Image Process. 20, 1838. DOI .
Dudok de Wit, T.: 2006, Solar Phys. 239, 519. DOI .
Geman, S., Geman, D.: 1984, IEEE Trans. Pattern Anal. Mach. Intell. 6, 721. DOI .
Gilboa, G., Osher, S.: 2007, Multiscale Model. Simul. 6, 595. DOI .
Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Adv. Space Res. 47, 2105. DOI .
Humblot, F., Djafari, A.: 2006, EURASIP J. Adv. Signal Process., 2006, 1. DOI .
Hurlburt, N., Cheung, M., Schrijver, C., Chang, L., Freeland, S., Green, S., et al.: 2012, Solar Phys. 275, 67. DOI .
Innes, D.E., Teriaca, L.: 2013, Solar Phys. 282, 453. DOI .
Ireland, J., Young, C.A.: 2009, Solar Image Analysis and Visualization, Springer, New York. DOI .
Kassaye, R.H.: 2013, Geoinform. Geostat. Overv. S1, 12. DOI .
Kestener, P., Conlon, P.A., Khalil, A., Fennell, L., McAteer, R.T.J., Gallagher, P.T., Arneodo, A.: 2010, Astrophys. J. 717, 995. DOI .
Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., Rozelot, J.P.: 2011, Astrophys. J. 727, 44. DOI .
Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. DOI .
Bratsolis, E., Sigelle, M.: 1998, Astron. Astrophys. Suppl. 131, 371. DOI .
McAteer, R.T.J., Gallagher, P.T., Ireland, J., Young, C.A.: 2005, Solar Phys. 228, 55. DOI .
McGrory, C.A., Titterington, D.M., Reeves, R., Pettitt, A.N.: 2009, Stat. Comput. 19, 329. DOI .
Murphy, K.P.: 2007, Conjugate Bayesian Analysis of the Gaussian Distribution. Technical Report, University of British, Columbia.
Narendra, K.S., Thathachar, M.A.L.: 1974, IEEE Trans. Syst. Man Cybern. SMC-4, 323. DOI .
Petroudi, S., Ketsetzis, G., Brady, M.: 2004, WSEAS Trans. Biol. Biomed. 1, 344.
Priest, E.R.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI .
Reiss, M.A., Hofmeister, S.J., De Visscher, R., Temmer, M., Veronig, A.M., Delouille, V., et al.: 2015, J. Space Weather Space Clim. 5, 23R. DOI .
Revathy, K., Lekshmi, S., Nayar, S.R.P.: 2005, Solar Phys. 228, 43. DOI .
Schmieder, B., Guo, Y., Moreno-Insertis, F., Aulanier, G., Yelles Chaouche, L., Nishizuka, N., et al.: 2013, Astron. Astrophys. 559A, 1S. DOI .
Shimazaki, H., Shinomoto, S.: 2007, Neural Comput. 19, 1503. DOI .
Takeda, H., Milanfar, P., Protter, M., Elad, M.: 2009, IEEE Trans. Image Process. 18, 1958. DOI .
Tan, B., Zhang, Y., Tan, C., Liu, Y.: 2010, Astrophys. J. 723, 25. DOI .
Teske, R.G., Thomas, R.J.: 1969, Solar Phys. 8, 348. DOI .
Ulmschneider, P., Priest, E.R., Rosner, R.: 1990, Mechanisms of Chromospheric and Coronal Heating: Proceedings of the International Conference, Springer, Berlin. DOI .
Verbeeck, C., Higgins, P.A., Colak, T., Watson, F.T., Delouille, V., Mampaey, B., Qahwaji, R.: 2013, Solar Phys. 283, 67. DOI .
Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, Astron. Astrophys. 561A, 29V. DOI .
Werlberger, M., Pock, T., Bischof, H.: 2010 In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2464. DOI .
Wu, F.Y.: 1982, Rev. Mod. Phys. 54, 235. DOI .
Yoon, K.J., Kweon, I.S.: 2006, IEEE Trans. Pattern Anal. Mach. Intell. 28, 650. DOI .
Acknowledgements
The authors acknowledge the SPoCA group: C. Verbeeck, V. Delouille, and B. Mampaey for making SPoCA results publicly available and the HEK team for providing SPoCA detections in the HEK. The authors also thank the anonymous referee for meticulous comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arish, S., Javaherian, M., Safari, H. et al. Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework. Sol Phys 291, 1209–1224 (2016). https://doi.org/10.1007/s11207-016-0883-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11207-016-0883-4
Keywords
- Sun: corona
- Sun: activity
- Sun: EUV radiation
- Techniques: image processing