Solar Physics

, Volume 291, Issue 3, pp 965–974 | Cite as

Annual Cosmic Ray Spectra from 250 MeV up to 1.6 GeV from 1995 – 2014 Measured with the Electron Proton Helium Instrument onboard SOHO

  • P. KühlEmail author
  • R. Gómez-Herrero
  • B. Heber


The solar modulation of galactic cosmic rays (GCR) can be studied in detail by examining long-term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) onboard the SOlar and Heliospheric Observatory (SOHO) is well suited for this kind of investigation. Although the design of the instrument is optimised to measure proton and helium isotope spectra up to \(50~\mbox{MeV}\,\mbox{nucleon}^{-1}\), the capability exists to determine proton energy spectra from 250 MeV up to above 1.6 GeV. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy-response function of EPHIN for electrons, protons, and heavier ions. For validation purposes, proton spectra based on this method are compared to various balloon missions and space instrumentation. As a result we present annual galactic cosmic-ray spectra from 1995 to 2014.


Galactic cosmic rays Solar modulation Energetic particles, protons 



The SOHO/EPHIN project is supported under Grant 50 OC 1302 by the German Bundesministerium für Wirtschaft through the Deutsches Zentrum für Luft- und Raumfahrt (DLR). SOHO is a project of international cooperation between ESA and NASA.

This work was carried out within the framework of the bilateral BMBF-NRF-project “Astrohel” (01DG15009) funded by the Bundesministerium für Bildung und Forschung. The responsibility of the contents of this work is with the authors.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 637324.

Raúl Gómez-Herrero acknowledges the financial support by the Spanish MINECO under projects ESP2013-48346-C2-1-R and AYA2012-39810-C02-01.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Abe, K., Fuke, H., Haino, S., Hams, T., Hasegawa, M., Horikoshi, A., et al.: 2016, Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica. Astrophys. J. (submitted). arXiv. ADS.
  2. Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., et al.: 2013, Time dependence of the proton flux measured by PAMELA during the 2006 July-2009 December solar minimum. Astrophys. J. 765, 91.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al.: 2003, GEANT4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., et al.: 2015, Precision measurement of the proton flux in primary cosmic rays from rigidity 1 gv to 1.8 tv with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 114, 171103.  DOI. ADSCrossRefGoogle Scholar
  5. Alcaraz, J., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., et al.: 2000, Cosmic protons. Phys. Lett. B 490, 27.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Gómez-Herrero, R.: 2003, Partículas energéticas en la heliosfera interna (1996 – 2000). Respuesta instrumental y observaciones del sensor ephin embarcado en el observatorio solar y heliosferico soho (esa-nasa). PhD thesis, University of Alcalá. Google Scholar
  8. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Heber, B., Potgieter, M.S.: 2006, Cosmic rays at high heliolatitudes. Space Sci. Rev. 127, 117.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Heber, B., Fichtner, H., Scherer, K.: 2006, Solar and heliospheric modulation of galactic cosmic rays. Space Sci. Rev. 125, 81.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Hess, V.F.: 1912, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13, 1094. Google Scholar
  12. Kühl, P., Banjac, S., Heber, B., Labrenz, J., Müller-Mellin, R., Terasa, C.: 2015a, Extended measurement capabilities of the electron proton helium INstrument aboard SOHO – understanding single detector count rates. Cent. Eur. Astrophys. Bull. 39, 119. ADSGoogle Scholar
  13. Kühl, P., Dresing, N., Gieseler, J., Heber, B., Klassen, A.: 2015b, Galactic Cosmic Ray Spectra During Solar Cycle 23 and 24 – Measurement Capabilities of the Electron Proton Helium Instrument. In: 34th Int. Cosimic Ray Conf. 2015, Proc. Science. Google Scholar
  14. Kühl, P., Banjac, S., Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., et al.: 2015c, Proton intensity spectra during the solar energetic particle events of May 17, 2012 and January 6, 2014. Astron. Astrophys. 576, A120.  DOI. ADS. CrossRefGoogle Scholar
  15. Mewaldt, R.A., Davis, A.J., Lave, K.A., Leske, R.A., Stone, E.C., Wiedenbeck, M.E., et al.: 2010, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci. Rev. 171, 97.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Morgado, B., Filipe Maia, D.J., Lanzerotti, L., Gonçalves, P., Patterson, J.D.: 2015, The low energy magnetic spectrometer on Ulysses and ACE response to near relativistic protons. Astron. Astrophys. 577, A61.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Müller-Mellin, R., Kunow, H., Fleißner, V., Pehlke, E., Rode, E., Röschmann, N., et al.: 1995, Costep – comprehensive suprathermal and energetic particle analyser. Solar Phys. 162, 483.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Potgieter, M.S.: 2013, Solar modulation of cosmic rays. Living Rev. Solar Phys. 10, 3.  DOI. ADSCrossRefGoogle Scholar
  22. Potgieter, M.S., Vos, E.E., Boezio, M., De Simone, N., Di Felice, V., Formato, V.: 2014, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Solar Phys. 289, 391.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Shikaze, Y., Haino, S., Abe, K., Fuke, H., Hams, T., Kim, K.C., et al.: 2007, Measurements of 0.2 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astropart. Phys. 28, 154.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Stone, E.C., Cummings, A.C., McDonald, F.B., Heikkila, B.C., Lal, N., Webber, W.R.: 2013, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, 2104.  DOI. ADS. CrossRefGoogle Scholar
  26. Webber, W.R., Lockwood, J.A.: 1988, Characteristics of the 22-year modulation of cosmic rays as seen by neutron monitors. J. Geophys. Res. 93, 8735.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for experimental and applied physicsUniversity KielKielGermany
  2. 2.Space Research GroupUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations