Solar Physics

, Volume 291, Issue 9–10, pp 2733–2761 | Cite as

The Revised Brussels–Locarno Sunspot Number (1981 – 2015)

  • Frédéric CletteEmail author
  • Laure LefèvreEmail author
  • Marco CagnottiEmail author
  • Sergio CortesiEmail author
  • Andreas Bulling
Sunspot Number Recalibration


In 1981, the production of the international sunspot number moved from the Zürich Observatory to the Royal Observatory of Belgium, with a new pilot station: the Specola Solare Ticinese Observatory in Locarno, Switzerland. This marked a profound transition in the history of the sunspot number. Those recent decades are particularly important as they provide the link between recent modern solar indices and the entire sunspot-number series extending back to the eighteenth century. However, large variations have recently been identified in the scale of the sunspot number during this recent time period. Here, we refine the determination of those recent inhomogeneities by reconstructing a new average sunspot-number series [\(S_{\mathrm{N}}\)] from a subset of long-duration stations between 1981 and 2015. We also extend this reconstruction by gathering long time series from 35 stations over 1945 – 2015, thus straddling the critical 1981 transition. In both reconstructions, we also derive a parallel group number series [\(G_{\mathrm{N}}\)] built by the same method from exactly the same data set. Our results confirm the variable trends associated with drifts of the Locarno pilot station, which start only in 1983. They lead to a fully uniform \(S_{\mathrm{N}}\)-series over the entire 1945 – 2015 interval. By comparing the new \(S_{\mathrm{N}}\)- and \(G_{\mathrm{N}}\)-series, we find that a constant quadratic relation exists between those two indices over Cycles 19 to 23. Comparisons with a few other solar indices additionally validate this and reveal some possible undetected problems in those series. Using this new reference \(S_{\mathrm{N}}\), we find that observing stations are surprisingly grouped among distinct subsets that share similar personal \(k\)-scaling coefficients. These various results also open the way to implementing a more advanced method for producing the sunspot number in the future.


Sunspots, statistics Solar cycle, observations 



F. Clette and L. Lefèvre would like to acknowledge financial support from the Belgian Solar-Terrestrial Center of Excellence (STCE; ). Part of this work was developed in the framework of the SOLID project (EU 7th Framework Program, SPACE collaborative projects, ) and of the TOSCA project (ESSEM COST action ES1005 of the European Union; ). The Specola Solare Ticinese Observatory acknowledges financial support from the Cantone Ticino and from the Associazione Specola Solare Ticinese (ASST).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. Berghmans, D., van der Linden, R.A.M., Vanlommel, P., Clette, F., Robbrecht, E.: 2006, History of the sunspot index: 25 years SIDC. Beitr. Gesch. Geophys. Kosm. Phys. 7(1), 288. Google Scholar
  2. Clette, F., Lefèvre, L.: 2012, Are the sunspots really vanishing? Anomalies in solar cycle 23 and implications for long-term models and proxies. J. Space Weather Space Clim. 2(27), A6. CrossRefGoogle Scholar
  3. Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. submitted. Google Scholar
  4. Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R.A.M., Koeckelenbergh, A., Wauters, L.: 2007, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919. ADSCrossRefGoogle Scholar
  5. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. ADSCrossRefGoogle Scholar
  6. Coffey, H.E., Hanchett, C.D., Erwin, E.H.: 1999, AAVSO solar division digital data archives at NGDC. J. Am. Assoc. Var. Star Obs. 27, 55. ADSGoogle Scholar
  7. Fröhlich, C.: 2013, Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237. ADSCrossRefGoogle Scholar
  8. Hossfield, C.H.: 2002, A history of the Zurich and American relative sunspot number indices. J. Am. Assoc. Var. Star Obs. 31, 48. ADSGoogle Scholar
  9. Hoyt, D.V., Schatten, K.H.: 1998a, Group sunspot numbers: A new solar activity reconstruction. Solar Phys. 181, 491. ADSCrossRefGoogle Scholar
  10. Hoyt, D.V., Schatten, K.H.: 1998b, Group sunspot numbers: A new solar activity reconstruction. Solar Phys. 179, 189. ADSCrossRefGoogle Scholar
  11. Johnson, R.W.: 2011, Power law relating 10.7 cm flux to sunspot number. Astrophys. Space Sci. 332, 73. ADSCrossRefGoogle Scholar
  12. Lockwood, M., Owens, M.J., Barnard, L.: 2014, Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J. Geophys. Res. 119, 5172. CrossRefGoogle Scholar
  13. Lukianova, R., Mursula, K.: 2011, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Solar-Terr. Phys. 73, 235. ADSCrossRefGoogle Scholar
  14. Pevtsov, A.A., Bertello, L., Tlatov, A.G., Kilcik, A., Nagovitsyn, Y.A., Cliver, E.W.: 2014, Cyclic and long-term variation of sunspot magnetic fields. Solar Phys. 289, 593. ADSCrossRefGoogle Scholar
  15. Schaefer, B.E.: 1997a, Automatic inflation in the AAVSO sunspot number. J. Am. Assoc. Var. Star Obs. 26, 40. ADSGoogle Scholar
  16. Schaefer, B.E.: 1997b, Improvements for the AAVSO sunspot number. J. Am. Assoc. Var. Star Obs. 26, 47. ADSGoogle Scholar
  17. Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, Comparison of magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim. 4(27), A4. Google Scholar
  18. Stenflo, J.O.: 2016, Transition of the sunspot number from Zürich to Brussels in 1980: A personal perspective. Solar Phys. Google Scholar
  19. Svalgaard, L.: 2010, Updating the historical sunspot record. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum, CS-428, Astron. Soc. Pac., San Francisco, 297. Google Scholar
  20. Svalgaard, L.: 2015, Reconstruction of Solar Extreme Ultraviolet Flux 1740-2015. Solar Phys. (submitted) arXiv.
  21. Svalgaard, L., Hudson, H.S.: 2010, The solar microwave flux and the sunspot number. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum, CS-428, Astron. Soc. Pac., San Francisco, 325. Google Scholar
  22. Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: The backbone method. Solar Phys. (in press). Google Scholar
  23. Tapping, K.F., Morton, D.C.: 2013, The next generation of Canadian solar flux monitoring. J. Phys. Conf. Ser. 440(1), 012039. ADSCrossRefGoogle Scholar
  24. Tapping, K.F., Valdés, J.J.: 2011, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Solar Phys. 272, 337. ADSCrossRefGoogle Scholar
  25. Thuillier, G., Deland, M., Shapiro, A., Schmutz, W., Bolsée, D., Melo, S.M.L.: 2012, The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling. Solar Phys. 277, 245. ADSCrossRefGoogle Scholar
  26. Tlatov, A.G.: 2013, Long-term variations in sunspot characteristics. Geomagn. Aeron. 53, 953. ADSCrossRefGoogle Scholar
  27. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Royal Observatory of BelgiumBrusselsBelgium
  2. 2.Specola Solare TicineseLocarno MontiSwitzerland
  3. 3.Fachgruppe SONNEVereinigung der SternfreundeReutlingenGermany

Personalised recommendations