Advertisement

Solar Physics

, Volume 291, Issue 3, pp 989–1002 | Cite as

Possible Estimation of the Solar Cycle Characteristic Parameters by the 10.7 cm Solar Radio Flux

  • George Lampropoulos
  • Helen Mavromichalaki
  • Vasilis Tritakis
Article

Abstract

Two independent methods for estimating basic parameters of the solar cycle are presented. The first of them, the ascending-descending triangle method, is based on a previous work by Tritakis (Astrophys. Space Sci. 82, 463, 1982), which described how the fundamental parameters of a certain solar cycle could be predicted from the shape of the previous one. The relation between the two cycles before and after a specific 11-year solar cycle is tighter than between the two cycles belonging to the same 22-year solar cycle (even-odd cycle). The second is the MinimaxX method, which uses a significant relation in the international sunspot number between the maximum value of a solar cycle and its value 2.5 or 3 years (depending on the enumeration of the even or odd cycle) before the preceding minimum. The tests applied to Cycles 12 to 24 indicate that both methods can estimate the peak of the 11-year solar radio flux at a high confidence level. The data used in this study are the 10.7 cm solar radio flux since 1947, which have been extrapolated back to 1848 from the strong correlation between the monthly international sunspot numbers and the adjusted values of the 10.7 cm radio flux.

Keywords

Solar cycles Solar radio flux Space weather 

Notes

Acknowledgements

The authors express thanks to the providers of the solar data we used in this work. The monthly adjusted radio flux mean values from the Solar Data Services of National Oceanic and Atmospheric Administration (NOAA) and National Geophysical Data Center (NGDC): http://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_adjusted/listings .

Ethical Statement

None the authors has received funding for this work. The corresponding author (H. Mavromichalaki) is professor of the University of Athens, one of the co-authors (G. Lampropoulos) is student at the University of Athens, and the other (V. Tritakis) is research collaborator in the Research Center for Astronomy of the Academy of Athens. There are no conflicts of interest among the authors.

References

  1. Brajsa, R., Romstajn, I., Wöhl, H., Benz, A.O., Temmer, M., Rosa, D.: 2009, Heights of solar tracers observed at 8 mm and an interpretation of their radiation. Astron. Astrophys. 493, 613. ADSCrossRefGoogle Scholar
  2. Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., Kromer, B.: 2005, Possible solar origin of the 1470-year glacial climate cycle demonstrated in a coupled model. Nature 438, 208. ADSCrossRefGoogle Scholar
  3. Brown, G.M.: 1976, What determines the sunspot maximum? Mon. Not. Roy. Astron. Soc. 174, 185. ADSCrossRefGoogle Scholar
  4. Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801. ADSCrossRefGoogle Scholar
  5. Conway, A.J., Macpherson, K.P., Blacklaw, G., Brown, J.C.: 1998, A neural network prediction of solar cycle 23. J. Geophys. Res. 103, 29733. ADSCrossRefGoogle Scholar
  6. Dikpati, M., Gilman, P.A., de Toma, G.: 2008, The Waldmeier effect: An artifact of the definition of Wolf sunspot number? Astrophys. J. Lett. 673, L99. ADSCrossRefGoogle Scholar
  7. Du, Z.L.: 2006, Relationship between solar maximum amplitude and max-max cycle length. Astron. J. 132, 1485. ADSCrossRefGoogle Scholar
  8. Du, Z., Du, S.: 2006, The relationship between the amplitude and descending time of solar activity cycle. Solar Phys. 238, 431. ADSCrossRefGoogle Scholar
  9. Gleissberg, W.: 1973, Revision of the probability laws of sunspot variations. Solar Phys. 30, 539. ADSCrossRefGoogle Scholar
  10. Gnevyshev, M.N.: 1977, Essential features of the 11-year solar cycle. Solar Phys. 51, 175. ADSCrossRefGoogle Scholar
  11. Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. Zh. 25, 18. Google Scholar
  12. Hathaway, D.H., Wilson, R.M.: 2006, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101. ADSCrossRefGoogle Scholar
  13. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. ADSCrossRefGoogle Scholar
  14. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375. ADSCrossRefGoogle Scholar
  15. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: Sunspot cycle characteristics. Solar Phys. 211, 357. ADSCrossRefGoogle Scholar
  16. Helal, H.R., Galal, A.A.: 2013, An early prediction of the maximum amplitude of the solar cycle 25. J. Adv. Res. 4, 275. CrossRefGoogle Scholar
  17. Hiremath, K.M.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci. 314, 45. ADSCrossRefGoogle Scholar
  18. Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. ADSCrossRefGoogle Scholar
  19. Kane, R.P.: 2008, Prediction of solar cycle maximum using solar cycle lengths. Solar Phys. 248, 203. ADSCrossRefGoogle Scholar
  20. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. ADSCrossRefGoogle Scholar
  21. Mavromichalaki, H., Belehaki, A., Rafios, X.: 1998, Simulated effects at neutron monitor energies: Evidence of the 22-year cosmic ray variation. Astron. Astrophys. 330, 764. ADSGoogle Scholar
  22. Mavromichalaki, H., Marmatsouri, E., Vassilaki, A.: 1988, Solar-cycle phenomena in cosmic ray intensity: Differences between even and odd solar cycles. Earth Moon Planets 42, 233. ADSCrossRefGoogle Scholar
  23. Mavromichalaki, H., Belehaki, A., Rafios, X., Tsagouri, I.: 1997, Hale-cycle effects in cosmic ray intensity during the last four cycles. Astrophys. Space Sci. 246, 7. ADSCrossRefGoogle Scholar
  24. Mavromichalaki, H., Preka-Papadima, P., Liritzis, I., Petropoulos, B., Kurt, V.: 2003, Short term variations of cosmic ray intensity and flare-related data in 1981 – 1983. New Astron. 8, 777. ADSCrossRefGoogle Scholar
  25. Ohl, A.I.: 1966, Forecast of sunspot maximum number of cycle 20. Soln. Dannye 9, 84. Google Scholar
  26. Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209. ADSCrossRefGoogle Scholar
  27. Pesnell, W.D.: 2012, Solar cycle predictions. Solar Phys. 281, 507. ADSGoogle Scholar
  28. Pesnell, W.D.: 2014, Predicting solar cycle 24 using a geomagnetic precursor pair. Solar Phys. 289, 2317. ADSCrossRefGoogle Scholar
  29. Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7(6). http://solarphysics.livingreviews.org/Articles/lrsp-2010-6/.
  30. Pishkalo, M.I.: 2008, Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters. Kinemat. Fiz. Nebesnyh Tel 24, 370. Google Scholar
  31. Rigozo, N.R., Souza Echer, M.P., Evangelista, H., Nordemann, D.J.R., Echer, E.: 2011, Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25. J. Atmos. Solar-Terr. Phys. 73, 1294. ADSCrossRefGoogle Scholar
  32. Sonett, C.P., Finney, S.A., Berger, A.: 1990, The spectrum of radiocarbon. Phil. Trans. Roy. Soc. London A 330, 413. ADSCrossRefGoogle Scholar
  33. Tapping, K.F., Charrois, D.P.: 1994, Limits to the accuracy of the 10.7 cm flux. Solar Phys. 150, 305. ADSCrossRefGoogle Scholar
  34. Tapping, K.F., DeTracey, B.: 1990, The origin of the 10.7 cm flux. Solar Phys. 127, 321. ADSCrossRefGoogle Scholar
  35. Tritakis, V.: 1982, Evidence of independence within the 22-year solar cycles. Astrophys. Space Sci. 82, 463. ADSCrossRefGoogle Scholar
  36. Tritakis, V., Mavromichalaki, H., Giouvanellis, G.: 2006, Prediction of basic parameters of the forthcoming solar cycles 24 and 25 (years 2005 – 2027). In: Solomos, N.H. (ed.) Recent Advances in Astronomy and Astrophysics, AIP Conf. Proc. 848, 154. Google Scholar
  37. Waldmeier, M.: 1939, Sunspot activity. Astron. Mitt. 14, 439. ADSGoogle Scholar
  38. Wintoft, P.: 2011, The variability of solar EUV. J. Atmos. Solar-Terr. Phys. 73, 1708. ADSCrossRefGoogle Scholar
  39. Wolf, R.: 1861, Abstract of his latest results. Mon. Not. Roy. Astron. Soc. 21, 77. ADSCrossRefGoogle Scholar
  40. Wolf, R.: 1881, Quelques résultats déduits de la statistique solaire. Mem. Soc. Spettro. Ital. 10, 61. Google Scholar
  41. Wu, Q., Gablehouse, R.D., Solomon, S.C., Killeen, T.L., She, C.-Y.: 2004, A new Fabry–Perot interferometer for upper atmospheric research. In: Nardell, C.A., Lucey, P.G., Yee, J.-H., Garvin, J.B. (eds.) Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, Proc. SPIE 5660, 218. CrossRefGoogle Scholar
  42. Xanthakis, J., Poulakos, C.: 1985, Astrophys. Space Sci. 111, 179. ADSCrossRefGoogle Scholar
  43. Yoshida, A., Sayre, R.: 2013, Prediction of the amplitude of solar cycle 25. In: AGU Fall Meeting, Abstract #SH41C-2205. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • George Lampropoulos
    • 1
  • Helen Mavromichalaki
    • 1
  • Vasilis Tritakis
    • 2
  1. 1.Nuclear and Particle Physics Department, Faculty of PhysicsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Research Center of Astronomy and Applied MathematicsAcademy of AthensAthensGreece

Personalised recommendations